
StructuresStructuresStructures

Systems ProgrammingSystems Programming

StructuresStructuresStructures

StructuresStructures
TypedefTypedef
DeclarationsDeclarations
Using Structures with FunctionsUsing Structures with Functions

Systems Programming: StructuresSystems Programming: Structures 22Systems Programming:Systems Programming: 22

10.1 Introduction10.1 Introduction

Structures
– A collection of related variables
(aggregates) under one name.
• Can contain variables of different data
types.

– Commonly used to define records to be
stored in files.

– When combined with pointers, structures
can create linked lists, stacks, queues,
and trees.

© 2007 Pearson Ed -All rights reserved.

Systems Programming: StructuresSystems Programming: Structures 33

StructuresStructures

Example 1:
struct player
{

char *name;
int num;
char *team;
char *pos;

} ; /* Don’t forget this semicolon! */

structure tag

structure members

Systems Programming: StructuresSystems Programming: Structures 44

StructuresStructures

Example 1:
struct player
{

char *name;
int num;
char *team;
char *pos;

} player1, player2;

structure tag

structure members

Declare two players

Systems Programming: StructuresSystems Programming: Structures 55

Typedef ExampleTypedef Example
Example 2:
struct card
{
const char *face;
const char *suit;

} ;
typedef struct card Card;

struct introduces the definition for structure card.
card is the structure name and is used to declare variables of
the structure type.
card contains two members of type char *

– These members are face and suit.

The new type Card is
an alias for type
struct card.

© 2007 Pearson Ed -All rights reserved.

Systems Programming: StructuresSystems Programming: Structures 66

typedeftypedef

Another way::
typedef struct
{

const char *face;
const char *suit;

} Card;
…
Card deck[52];

© 2007 Pearson Ed -All rights reserved.

Systems Programming: StructuresSystems Programming: Structures 77

10.6 typedef10.6 typedef
Example:

typedef struct Card *CardPtr;
or

Card *Cardptr;
– Defines a new type name CardPtr as an

alias for type struct Card *.
– typedef does not create a new data

type.
• It only creates an alias.

Capitalize the first letter of typedef
names to emphasize that they are
synonyms for other type names.

© 2007 Pearson Ed -All rights reserved.

Systems Programming: StructuresSystems Programming: Structures 88

10.2 Structure Definitions10.2 Structure Definitions
struct information

– A struct cannot contain an instance of itself.
– It can contain a member that is a pointer to the same

structure type (a self-referential structure) .
– A structure definition does not reserve space in memory.

Rather a struct creates a new data type used to define
structure variables.

Definitions
– Defined like other variables:

card oneCard, deck[52], *cPtr;
– Can use a comma separated list:

struct card {
char *face;
char *suit;

} oneCard, deck[52], *cPtr;

© 2007 Pearson Ed -All rights reserved.

Systems Programming: StructuresSystems Programming: Structures 99

10.2 Structure Definitions10.2 Structure Definitions

Valid Operations
– Assigning a structure to a structure of
the same type.

– Taking the address (&) of a structure
– Accessing the members of a structure.
– Using the sizeof operator to determine
the size of a structure.

© 2007 Pearson Ed -All rights reserved.

Systems Programming: StructuresSystems Programming: Structures 1010

10.3 Initializing Structures10.3 Initializing Structures
Initializer lists

– Example:
struct card oneCard = { "Three", "Hearts" };

Assignment statements
– Example:

struct card threeHearts = oneCard;
– Could also define and initialize threeHearts

as follows:
struct card threeHearts;
threeHearts.face = “Three”;
threeHearts.suit = “Hearts”;

© 2007 Pearson Ed -All rights reserved.

Systems Programming: StructuresSystems Programming: Structures 1111

10.4 Accessing Members of Structures10.4 Accessing Members of Structures

Accessing structure members
– The dot operator (.) {the structure member operator}{the structure member operator} is

used to access a structure member via the structure
variable name.
card myCard;
printf("%s", myCard.suit);

– The arrow operator (->) {the structure pointer operator}{the structure pointer operator}
accesses a structure member via a pointer to the
structure.
card *myCardPtr = &myCard;
printf("%s", myCardPtr->suit);

– myCardPtr->suit is equivalent to
(*myCardPtr).suit

© 2007 Pearson Ed -All rights reserved.

Systems Programming: StructuresSystems Programming: Structures 1212

Structure member and pointer operators

 1 /* Fig. 10.2: fig10_02.c

 2 Using the structure member and

 3 structure pointer operators */

 4 #include <stdio.h>

 5
 6 /* card structure definition */

 7 struct card {

 8 char *face; /* define pointer face */

 9 char *suit; /* define pointer suit */

10 }; /* end structure card */
11
12 int main(void)
13 {
14 struct card aCard; /* define one struct card variable */
15 struct card *cardPtr; /* define a pointer to a struct card */
16
17 /* place strings into aCard */
18 aCard.face = "Ace";
19 aCard.suit = "Spades";

Structure definition

Structure definition must end with semicolon

Dot operator accesses members of a structure © 2007 Pearson Ed -All rights reserved.

Systems Programming: StructuresSystems Programming: Structures 1313

Structure member and pointer operators

20
21 cardPtr = &aCard; /* assign address of aCard to cardPtr */
22
23 printf("%s%s%s\n%s%s%s\n%s%s%s\n", aCard.face, " of ", aCard.suit,
24 cardPtr->face, " of ", cardPtr->suit,
25 (*cardPtr).face, " of ", (*cardPtr).suit);
26
27 return 0; /* indicates successful termination */
28
29 } /* end main */

Ace of Spades
Ace of Spades
Ace of Spades

Arrow operator accesses members
of a structure pointer

© 2007 Pearson Ed -All rights reserved.

Systems Programming: StructuresSystems Programming: Structures 1414

10.5 Using Structures with Functions10.5 Using Structures with Functions
Passing structures to functions

– The entire structure can be passed.
– Individual members of the structure can be passed.
– For both cases, they are passed by value.

To pass a structure by-reference
– Pass the address of the structure variable.

To pass arrays by-value
– Create a structure with the array as a member and

then pass the structure.

© 2007 Pearson Ed -All rights reserved.

Systems Programming: StructuresSystems Programming: Structures 1515

Systems Programming: StructuresSystems Programming: Structures 1616

 1 /* Fig. 10.3: fig10_03.c

 2 The card shuffling and dealing program using structures */

 3 #include <stdio.h>

 4 #include <stdlib.h>

 5 #include <time.h>

 6
 7 /* card structure definition */

 8 struct card {

 9 const char *face; /* define pointer face */

10 const char *suit; /* define pointer suit */
11 }; /* end structure card */
12
13 typedef struct card Card; /* new type name for struct card */
14
15 /* prototypes */
16 void fillDeck(Card * const wDeck, const char * wFace[],
17 const char * wSuit[]);
18 void shuffle(Card * const wDeck);
19 void deal(const Card * const wDeck);
20
21 int main(void)
22 {
23 Card deck[52]; /* define array of Cards */
24
25 /* initialize array of pointers */
26 const char *face[] = { "Ace", "Deuce", "Three", "Four", "Five",
27 "Six", "Seven", "Eight", "Nine", "Ten",
28 "Jack", "Queen", "King"};
29

A Structure Example

Each card has a face and a suit

Card is now an alias for
struct card

© 2007 Pearson Ed -All rights reserved.

A Structure Example
30 /* initialize array of pointers */
31 const char *suit[] = { "Hearts", "Diamonds", "Clubs", "Spades"};
32
33 srand(time(NULL)); /* randomize */
34
35 fillDeck(deck, face, suit); /* load the deck with Cards */
36 shuffle(deck); /* put Cards in random order */
37 deal(deck); /* deal all 52 Cards */
38
39 return 0; /* indicates successful termination */
40
41 } /* end main */
42
43 /* place strings into Card structures */
44 void fillDeck(Card * const wDeck, const char * wFace[],
45 const char * wSuit[])
46 {
47 int i; /* counter */
48
49 /* loop through wDeck */
50 for (i = 0; i <= 51; i++) {
51 wDeck[i].face = wFace[i % 13];
52 wDeck[i].suit = wSuit[i / 13];
53 } /* end for */
54
55 } /* end function fillDeck */
56

Constant pointer to modifiable array
of Cards

Fills the deck by giving each
Card a face and suit

© 2007 Pearson Ed -All rights reserved.

Systems Programming: StructuresSystems Programming: Structures 1717

A Structure Example

1818Systems Programming: StructuresSystems Programming: Structures

57 /* shuffle cards */
58 void shuffle(Card * const wDeck)
59 {
60 int i; /* counter */
61 int j; /* variable to hold random value between 0 - 51 */
62 Card temp; /* define temporary structure for swapping Cards */
63
64 /* loop through wDeck randomly swapping Cards */
65 for (i = 0; i <= 51; i++) {
66 j = rand() % 52;
67 temp = wDeck[i];
68 wDeck[i] = wDeck[j];
69 wDeck[j] = temp;
70 } /* end for */
71
72 } /* end function shuffle */
73
74 /* deal cards */
75 void deal(const Card * const wDeck)
76 {
77 int i; /* counter */
78
79 /* loop through wDeck */
80 for (i = 0; i <= 51; i++) {
81 printf("%5s of %-8s%c", wDeck[i].face, wDeck[i].suit,
82 (i + 1) % 2 ? '\t' : '\n');
83 } /* end for */
84
85 } /* end function deal */

Each card is swapped with another, random
card, shuffling the deck

© 2007 Pearson Ed -All rights reserved.

A Structure Example

Four of Clubs Three of Hearts

Three of Diamonds Three of Spades

 Four of Diamonds Ace of Diamonds

 Nine of Hearts Ten of Clubs

Three of Clubs Four of Hearts

Eight of Clubs Nine of Diamonds

Deuce of Clubs Queen of Clubs

Seven of Clubs Jack of Spades

 Ace of Clubs Five of Diamonds

 Ace of Spades Five of Clubs

Seven of Diamonds Six of Spades

Eight of Spades Queen of Hearts

 Five of Spades Deuce of Diamonds

Queen of Spades Six of Hearts

Queen of Diamonds Seven of Hearts

 Jack of Diamonds Nine of Spades

Eight of Hearts Five of Hearts

 King of Spades Six of Clubs

Eight of Diamonds Ten of Spades

 Ace of Hearts King of Hearts

 Four of Spades Jack of Hearts

Deuce of Hearts Jack of Clubs

Deuce of Spades Ten of Diamonds

Seven of Spades Nine of Clubs

 King of Clubs Six of Diamonds

 Ten of Hearts King of Diamonds

1919Systems Programming: StructuresSystems Programming: Structures

SummarySummary

Definition of structures in C
Syntax details for declaring structs
Initializing structs
Typedef
Structure member (.) and pointer ->
operators
Passing structures to functions
A Structure Example

Systems Programming: StructuresSystems Programming: Structures 2020

	Structures
	Structures
	10.1 Introduction
	Structures
	Structures
	Typedef Example
	typedef
	10.6 typedef
	10.2 Structure Definitions
	10.2 Structure Definitions
	10.3 Initializing Structures
	10.4 Accessing Members of Structures
	10.5 Using Structures with Functions
	Summary

