
Classes:
A Deeper Look

Classes:Classes:
A Deeper LookA Deeper Look

Systems ProgrammingSystems Programming

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 22

Deeper into C++ ClassesDeeper into C++ ClassesDeeper into C++ Classes
constconst objects and constconst member functions
Composition
Friendship
thisthis pointer
Dynamic memory management
–– newnew and deletedelete operators

staticstatic class members and member
functions
Abstract Data Types

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 33

21.2 const (Constant) Objects and const
Member Functions

21.2 const (Constant) Objects and const
Member Functions

Principle of least privilege
– One of the most fundamental principles of good

software engineering
– Applies to objects, too

constconst objects
– Keyword constconst

– Specifies that an object is not modifiable.
– Attempts to modify the object will result in

compilation errors.
Example

–– Const Time noon (12, 0, 0);Const Time noon (12, 0, 0);

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 44

const (Constant) Objects and const
Member Functions

const (Constant) Objects and const
Member Functions

const member functions
– Only constconst member function can be
called for constconst objects.

– Member functions declared constconst are
not allowed to modify the object.

– A function is specified as constconst both in
its prototype and in its definition.

–– constconst declarations are not allowed for
constructors and destructors.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 55

Software Engineering Observation 21.2Software Engineering Observation 21.2

A constconst member function can be
overloaded with a non-constconst
version. The compiler chooses which
overloaded member function to use
based on the object on which the
function is invoked. If the object is
constconst, the compiler uses the constconst
version. If the object is not constconst,
the compiler uses the non-constconst
version.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 66

const Exampleconst Example
 1 // Fig. 21.1: Time.h

 2 // Definition of class Time.

 3 // Member functions defined in Time.cpp.

 4 #ifndef TIME_H

 5 #define TIME_H

 6
 7 class Time

 8 {

 9 public:

10 Time(int = 0, int = 0, int = 0); // default constructor
11
12 // set functions
13 void setTime(int, int, int); // set time
14 void setHour(int); // set hour
15 void setMinute(int); // set minute
16 void setSecond(int); // set second
17
18 // get functions (normally declared const)
19 int getHour() const; // return hour
20 int getMinute() const; // return minute
21 int getSecond() const; // return second

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 77

const Exampleconst Example
22
23 // print functions (normally declared const)
24 void printUniversal() const; // print universal time
25 void printStandard(); // print standard time (should be const)
26 private:
27 int hour; // 0 - 23 (24-hour clock format)
28 int minute; // 0 - 59
29 int second; // 0 - 59
30 }; // end class Time
31
32 #endif

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 88

const Exampleconst Example
 1 // Fig. 21.2: Time.cpp

 2 // Member-function definitions for class Time.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include <iomanip>

 7 using std::setfill;

 8 using std::setw;

 9
10 #include "Time.h" // include definition of class Time
11
12 // constructor function to initialize private data;
13 // calls member function setTime to set variables;
14 // default values are 0 (see class definition)
15 Time::Time(int hour, int minute, int second)
16 {
17 setTime(hour, minute, second);
18 } // end Time constructor
19
20 // set hour, minute and second values
21 void Time::setTime(int hour, int minute, int second)
22 {
23 setHour(hour);
24 setMinute(minute);
25 setSecond(second);
26 } // end function setTime

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 99

const Exampleconst Example
27
28 // set hour value
29 void Time::setHour(int h)
30 {
31 hour = (h >= 0 && h < 24) ? h : 0; // validate hour
32 } // end function setHour
33
34 // set minute value
35 void Time::setMinute(int m)
36 {
37 minute = (m >= 0 && m < 60) ? m : 0; // validate minute
38 } // end function setMinute
39
40 // set second value
41 void Time::setSecond(int s)
42 {
43 second = (s >= 0 && s < 60) ? s : 0; // validate second
44 } // end function setSecond
45
46 // return hour value
47 int Time::getHour() const // get functions should be const
48 {
49 return hour;
50 } // end function getHour

const keyword in function definition,
as well as in function prototype

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 1010

const Exampleconst Example
51
52 // return minute value
53 int Time::getMinute() const
54 {
55 return minute;
56 } // end function getMinute
57
58 // return second value
59 int Time::getSecond() const
60 {
61 return second;
62 } // end function getSecond
63
64 // print Time in universal-time format (HH:MM:SS)
65 void Time::printUniversal() const
66 {
67 cout << setfill('0') << setw(2) << hour << ":"
68 << setw(2) << minute << ":" << setw(2) << second;
69 } // end function printUniversal
70
71 // print Time in standard-time format (HH:MM:SS AM or PM)
72 void Time::printStandard() // note lack of const declaration
73 {
74 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)
75 << ":" << setfill('0') << setw(2) << minute
76 << ":" << setw(2) << second << (hour < 12 ? " AM" : " PM");
77 } // end function printStandard

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 1111

const Exampleconst Example
 1 // Fig. 21.3: fig21_03.cpp

 2 // Attempting to access a const object with non-const member functions.

 3 #include "Time.h" // include Time class definition

 4
 5 int main()

 6 {

 7 Time wakeUp(6, 45, 0); // non-constant object

 8 const Time noon(12, 0, 0); // constant object

 9
10 // OBJECT MEMBER FUNCTION
11 wakeUp.setHour(18); // non-const non-const
12
13 noon.setHour(12); // const non-const
14
15 wakeUp.getHour(); // non-const const
16
17 noon.getMinute(); // const const
18 noon.printUniversal(); // const const
19
20 noon.printStandard(); // const non-const
21 return 0;
22 } // end main

Cannot invoke non-const member
functions on a const object

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 1212

const Exampleconst Example
Borland C++ command-line compiler error messages:

Warning W8037 fig21_03.cpp 13: Non-const function Time::setHour(int)

 called for const object in function main()

Warning W8037 fig21_03.cpp 20: Non-const function Time::printStandard()
 called for const object in function main()

Microsoft Visual C++.NET compiler error messages:

C:\examples\ch21\Fig21_01_03\fig21_03.cpp(13) : error C2662:
 'Time::setHour' : cannot convert 'this' pointer from 'const Time' to
 'Time &'

 Conversion loses qualifiers

C:\examples\ch21\Fig21_01_03\fig21_03.cpp(20) : error C2662:
 'Time::printStandard' : cannot convert 'this' pointer from 'const Time' to
 'Time &'

 Conversion loses qualifiers

GNU C++ compiler error messages:

Fig21_03.cpp:13: error: passing `const Time' as `this' argument of
 `void Time::setHour(int)' discards qualifiers

Fig21_03.cpp:20: error: passing `const Time' as `this' argument of

 `void Time::printStandard()' discards qualifiers

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 1313

Member InitializerMember Initializer
Required for initializing
–– constconst data members
– Data members that are references.

Can be used for any data member.
Member initializer list
– Appears between a constructor’s parameter list and the

left brace that begins the constructor’s body.
– Separated from the parameter list with a colon (::).
– Each member initializer consists of the data member

name followed by parentheses containing the member’s
initial value.

– Multiple member initializers are separated by commas.
– Executes before the body of the constructor executes.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 1414

Member InitializerMember Initializer
 1 // Fig. 21.4: Increment.h

 2 // Definition of class Increment.

 3 #ifndef INCREMENT_H

 4 #define INCREMENT_H

 5
 6 class Increment

 7 {

 8 public:

 9 Increment(int c = 0, int i = 1); // default constructor

10
11 // function addIncrement definition
12 void addIncrement()
13 {
14 count += increment;
15 } // end function addIncrement
16
17 void print() const; // prints count and increment
18 private:
19 int count;
20 const int increment; // const data member
21 }; // end class Increment
22
23 #endif

const data member that must be
initialized using a member initializer

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 1515

Member InitializerMember Initializer
 1 // Fig. 21.5: Increment.cpp

 2 // Member-function definitions for class Increment demonstrate using a

 3 // member initializer to initialize a constant of a built-in data type.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 #include "Increment.h" // include definition of class Increment

 9
10 // constructor
11 Increment::Increment(int c, int i)
12 : count(c), // initializer for non-const member
13 increment(i) // required initializer for const member
14 {
15 // empty body
16 } // end constructor Increment
17
18 // print count and increment values
19 void Increment::print() const
20 {
21 cout << "count = " << count << ", increment = " << increment << endl;
22 } // end function print

Colon (:) marks the start of a member initializer list

Member initializer for non-const member count

Required member initializer for const member increment

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 1616

 1 // Fig. 21.6: fig21_06.cpp

 2 // Program to test class Increment.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include "Increment.h" // include definition of class Increment

 7
 8 int main()

 9 {

10 Increment value(10, 5);
11
12 cout << "Before incrementing: ";
13 value.print();
14
15 for (int j = 1; j <= 3; j++)
16 {
17 value.addIncrement();
18 cout << "After increment " << j << ": ";
19 value.print();
20 } // end for
21
22 return 0;
23 } // end main

Before incrementing: count = 10, increment = 5

After increment 1: count = 15, increment = 5
After increment 2: count = 20, increment = 5
After increment 3: count = 25, increment = 5

Member InitializerMember Initializer

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 1717

Software Engineering Observation 21.3Software Engineering Observation 21.3

A constconst object cannot be modified
by assignment, so it must be
initialized. When a data member of a
class is declared constconst, a member
initializer must be used to provide
the constructor with the initial value
of the data member for an object of
the class. The same is true for
references.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 1818

Common Programming Error 21.5Common Programming Error 21.5

Not providing a member initializer
for a constconst data member is a
compilation error.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 1919

Software Engineering Observation 21.4Software Engineering Observation 21.4

Constant data members (constconst
objects and constconst variables) and
data members declared as
referencesreferences must be initialized
with member initializer syntax;
assignments for these types of
data in the constructor body are
not allowed.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 2020

21.3 Composition:
Objects as Members of Classes

21.3 Composition:
Objects as Members of Classes

Composition
– Sometimes referred to as a hashas--aa
relationshiprelationship..

– A class can have objects of other classes
as members.

– Example
•• AlarmClockAlarmClock object with a TimeTime object as a
member

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 2121

Composition: Objects as Members of ClassesComposition: Objects as Members of Classes

Initializing member objects
– Member initializers pass arguments from the object’s

constructor to member-object constructors.
– Member objects are constructed in the order in which

they are declared in the class definition.
• Not in the order they are listed in the constructor’s

member initializer list.
• Before the enclosing class object (host object) is

constructed.
– If a member initializer is not provided

• The member object’s default constructor will be called
implicitly.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 2222

Software Engineering Observation 21.5Software Engineering Observation 21.5

A common form of software
reusability is composition, in which
a class has objects of other
classes as members.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 2323

Composition ExampleComposition Example
 1 // Fig. 21.10: Date.h

 2 // Date class definition; Member functions defined in Date.cpp

 3 #ifndef DATE_H

 4 #define DATE_H

 5
 6 class Date

 7 {

 8 public:

 9 Date(int = 1, int = 1, int = 1900); // default constructor

10 void print() const; // print date in month/day/year format
11 ~Date(); // provided to confirm destruction order
12 private:
13 int month; // 1-12 (January-December)
14 int day; // 1-31 based on month
15 int year; // any year
16
17 // utility function to check if day is proper for month and year
18 int checkDay(int) const;
19 }; // end class Date
20
21 #endif

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 2424

Composition ExampleComposition Example
 1 // Fig. 21.11: Date.cpp

 2 // Member-function definitions for class Date.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "Date.h" // include Date class definition

 8
 9 // constructor confirms proper value for month; calls

10 // utility function checkDay to confirm proper value for day
11 Date::Date(int mn, int dy, int yr)
12 {
13 if (mn > 0 && mn <= 12) // validate the month
14 month = mn;
15 else
16 {
17 month = 1; // invalid month set to 1
18 cout << "Invalid month (" << mn << ") set to 1.\n";
19 } // end else
20
21 year = yr; // could validate yr
22 day = checkDay(dy); // validate the day
23
24 // output Date object to show when its constructor is called
25 cout << "Date object constructor for date ";
26 print();
27 cout << endl;
28 } // end Date constructor

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 2525

Composition ExampleComposition Example

29
30 // print Date object in form month/day/year
31 void Date::print() const
32 {
33 cout << month << '/' << day << '/' << year;
34 } // end function print
35
36 // output Date object to show when its destructor is called
37 Date::~Date()
38 {
39 cout << "Date object destructor for date ";
40 print();
41 cout << endl;
42 } // end ~Date destructor

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 2626

Composition ExampleComposition Example
43
44 // utility function to confirm proper day value based on
45 // month and year; handles leap years, too
46 int Date::checkDay(int testDay) const
47 {
48 static const int daysPerMonth[13] =
49 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
50
51 // determine whether testDay is valid for specified month
52 if (testDay > 0 && testDay <= daysPerMonth[month])
53 return testDay;
54
55 // February 29 check for leap year
56 if (month == 2 && testDay == 29 && (year % 400 == 0 ||
57 (year % 4 == 0 && year % 100 != 0)))
58 return testDay;
59
60 cout << "Invalid day (" << testDay << ") set to 1.\n";
61 return 1; // leave object in consistent state if bad value
62 } // end function checkDay

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 2727

Composition ExampleComposition Example
 1 // Fig. 21.12: Employee.h

 2 // Employee class definition.

 3 // Member functions defined in Employee.cpp.

 4 #ifndef EMPLOYEE_H

 5 #define EMPLOYEE_H

 6
 7 #include "Date.h" // include Date class definition

 8
 9 class Employee

10 {
11 public:
12 Employee(const char * const, const char * const,
13 const Date &, const Date &);
14 void print() const;
15 ~Employee(); // provided to confirm destruction order
16 private:
17 char firstName[25];
18 char lastName[25];
19 const Date birthDate; // composition: member object
20 const Date hireDate; // composition: member object
21 }; // end class Employee
22
23 #endif

Parameters to be passed via member
initializers to the constructor for class Date

const objects of class Date as members

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 2828

Composition ExampleComposition Example
 1 // Fig. 21.13: Employee.cpp

 2 // Member-function definitions for class Employee.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <cstring> // strlen and strncpy prototypes

 8 using std::strlen;

 9 using std::strncpy;

10
11 #include "Employee.h" // Employee class definition
12 #include "Date.h" // Date class definition
13
14 // constructor uses member initializer list to pass initializer
15 // values to constructors of member objects birthDate and hireDate
16 // [Note: This invokes the so-called "default copy constructor" which the
17 // C++ compiler provides implicitly.]
18 Employee::Employee(const char * const first, const char * const last,
19 const Date &dateOfBirth, const Date &dateOfHire)
20 : birthDate(dateOfBirth), // initialize birthDate
21 hireDate(dateOfHire) // initialize hireDate
22 {
23 // copy first into firstName and be sure that it fits
24 int length = strlen(first);
25 length = (length < 25 ? length : 24);
26 strncpy(firstName, first, length);
27 firstName[length] = '\0';

Member initializers that pass arguments to
Date’s implicit default copy constructor

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 2929

Composition ExampleComposition Example
28
29 // copy last into lastName and be sure that it fits
30 length = strlen(last);
31 length = (length < 25 ? length : 24);
32 strncpy(lastName, last, length);
33 lastName[length] = '\0';
34
35 // output Employee object to show when constructor is called
36 cout << "Employee object constructor: "
37 << firstName << ' ' << lastName << endl;
38 } // end Employee constructor
39
40 // print Employee object
41 void Employee::print() const
42 {
43 cout << lastName << ", " << firstName << " Hired: ";
44 hireDate.print();
45 cout << " Birthday: ";
46 birthDate.print();
47 cout << endl;
48 } // end function print
49
50 // output Employee object to show when its destructor is called
51 Employee::~Employee()
52 {
53 cout << "Employee object destructor: "
54 << lastName << ", " << firstName << endl;
55 } // end ~Employee destructor

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 3030

Composition ExampleComposition Example
 1 // Fig. 21.14: fig21_14.cpp

 2 // Demonstrating composition--an object with member objects.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "Employee.h" // Employee class definition

 8
 9 int main()

10 {
11 Date birth(7, 24, 1949);
12 Date hire(3, 12, 1988);
13 Employee manager("Bob", "Blue", birth, hire);
14
15 cout << endl;
16 manager.print();
17
18 cout << "\nTest Date constructor with invalid values:\n";
19 Date lastDayOff(14, 35, 1994); // invalid month and day
20 cout << endl;
21 return 0;
22 } // end main

Passing objects to a host object constructor

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 3131

Composition ExampleComposition Example

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988

Employee object constructor: Bob Blue

Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

Test Date constructor with invalid values:

Invalid month (14) set to 1.
Invalid day (35) set to 1.
Date object constructor for date 1/1/1994

Date object destructor for date 1/1/1994

Employee object destructor: Blue, Bob

Date object destructor for date 3/12/1988
Date object destructor for date 7/24/1949
Date object destructor for date 3/12/1988
Date object destructor for date 7/24/1949

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 3232

Common Programming Error 21.6Common Programming Error 21.6

A compilation error occurs if a
member object is not initialized with
a member initializer and the member
object’s class does not provide a
default constructor (i.e., the member
object’s class defines one or more
constructors, but none is a default
constructor).

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 3333

21.4 friend Functions and friend Classes21.4 friend Functions and friend Classes

friendfriend function of a class
– Defined outside that class’s scope.
– Not a member function of that class.
– has the right to access the non-publicpublic and publicpublic

members of that class.
– Standalone functions or entire classes may be declared to

be friends of a class.
– Can enhance performance.
– Often appropriate when a member function cannot be used

for certain operations.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 3434

friend Functions and friend Classesfriend Functions and friend Classes
To declare a function as a friendfriend of a class:
– Provide the function prototype in the class

definition preceded by keyword friendfriend..

To declare a class as a friend of another class:
– Place a declaration of the form

friend class friend class ClassTwoClassTwo;;
in the definition of class ClassOneClassOne

All member functions of class ClassTwoClassTwo are
friends of class ClassOneClassOne..

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 3535

friend Functions and friend Classesfriend Functions and friend Classes

Friendship is granted, not taken.
– For class B to be a friend of class A, class class AA

must explicitly declare that class must explicitly declare that class BB is its friendis its friend.
Friendship relation is neither symmetric nor
transitive
– If class A is a friend of class B, and class B is

a friend of class C, you cannot infer that class
B is a friend of class A, that class C is a friend
of class B, or that class A is a friend of class
C.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 3636

friend Functions and friend Classesfriend Functions and friend Classes

It is possible to specify overloaded functions as
friends of a class.
– Each overloaded function intended to be a
friend must be explicitly declaredexplicitly declared as a friend
of the class.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 3737

friend Function Examplefriend Function Example
 1 // Fig. 21.15: fig21_15.cpp

 2 // Friends can access private members of a class.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 // Count class definition

 8 class Count

 9 {

10 friend void setX(Count &, int); // friend declaration
11 public:
12 // constructor
13 Count()
14 : x(0) // initialize x to 0
15 {
16 // empty body
17 } // end constructor Count
18
19 // output x
20 void print() const
21 {
22 cout << x << endl;
23 } // end function print
24 private:
25 int x; // data member
26 }; // end class Count

friend function declaration (can
appear anywhere in the class)

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 3838

friend Function Examplefriend Function Example
27
28 // function setX can modify private data of Count
29 // because setX is declared as a friend of Count (line 10)
30 void setX(Count &c, int val)
31 {
32 c.x = val; // allowed because setX is a friend of Count
33 } // end function setX
34
35 int main()
36 {
37 Count counter; // create Count object
38
39 cout << "counter.x after instantiation: ";
40 counter.print();
41
42 setX(counter, 8); // set x using a friend function
43 cout << "counter.x after call to setX friend function: ";
44 counter.print();
45 return 0;
46 } // end main

counter.x after instantiation: 0

counter.x after call to setX friend function: 8

friend function can modify Count’s private data

Calling a friend function; note that we
pass the Count object to the function

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 3939

friend Function Examplefriend Function Example
 1 // Fig. 10.16: fig10_16.cpp

 2 // Non-friend/non-member functions cannot access private data of a class.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 // Count class definition (note that there is no friendship declaration)

 8 class Count

 9 {

10 public:
11 // constructor
12 Count()
13 : x(0) // initialize x to 0
14 {
15 // empty body
16 } // end constructor Count
17
18 // output x
19 void print() const
20 {
21 cout << x << endl;
22 } // end function print
23 private:
24 int x; // data member
25 }; // end class Count

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 4040

friend Function Examplefriend Function Example

26
27 // function cannotSetX tries to modify private data of Count,
28 // but cannot because the function is not a friend of Count
29 void cannotSetX(Count &c, int val)
30 {
31 c.x = val; // ERROR: cannot access private member in Count
32 } // end function cannotSetX
33
34 int main()
35 {
36 Count counter; // create Count object
37
38 cannotSetX(counter, 3); // cannotSetX is not a friend
39 return 0;
40 } // end main

Non-friend function cannot
access the class’s private data

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 4141

friend Function Examplefriend Function Example

Borland C++ command-line compiler error message:

Error E2247 Fig21_16/fig21_16.cpp 31: 'Count::x' is not accessible in
 function cannotSetX(Count &,int)

Microsoft Visual C++.NET compiler error messages:

C:\examples\ch21\Fig21_16\fig21_16.cpp(31) : error C2248: 'Count::x'
 : cannot access private member declared in class 'Count'

 C:\examples\ch21\Fig21_16\fig21_16.cpp(24) : see declaration
 of 'Count::x'

 C:\examples\ch21\Fig21_16\fig21_16.cpp(9) : see declaration
 of 'Count'

GNU C++ compiler error messages:

Fig21_16.cpp:24: error: 'int Count::x' is private

Fig21_16.cpp:31: error: within this context

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 4242

21.5 Using the this Pointer21.5 Using the this Pointer

Member functions know which object’s data
members to manipulate.
– Every object has access to its own address

through a pointer called thisthis (a C++
keyword).

– An object’s thisthis pointer is not part of the
object itself.

– The thisthis pointer is passed (by the compiler)
as an implicit argument to each of the
object’s nonnon--staticstatic member functions.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 4343

21.5 Using the this Pointer21.5 Using the this Pointer
Objects use the thisthis pointer implicitly or
explicitly.
– Used implicitly when accessing members
directly.

– Used explicitly when using keyword
thisthis..

– Type of the thisthis pointer depends on the
type of the object and whether the
executing member function is declared
constconst..

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 4444

this Examplethis Example
 1 // Fig. 21.17: fig21_17.cpp

 2 // Using the this pointer to refer to object members.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 class Test

 8 {

 9 public:

10 Test(int = 0); // default constructor
11 void print() const;
12 private:
13 int x;
14 }; // end class Test
15
16 // constructor
17 Test::Test(int value)
18 : x(value) // initialize x to value
19 {
20 // empty body
21 } // end constructor Test

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 4545

this Examplethis Example
22
23 // print x using implicit and explicit this pointers;
24 // the parentheses around *this are required
25 void Test::print() const
26 {
27 // implicitly use the this pointer to access the member x
28 cout << " x = " << x;
29
30 // explicitly use the this pointer and the arrow operator
31 // to access the member x
32 cout << "\n this->x = " << this->x;
33
34 // explicitly use the dereferenced this pointer and
35 // the dot operator to access the member x
36 cout << "\n(*this).x = " << (*this).x << endl;
37 } // end function print
38
39 int main()
40 {
41 Test testObject(12); // instantiate and initialize testObject
42
43 testObject.print();
44 return 0;
45 } // end main

 x = 12
 this->x = 12
(*this).x = 12

Implicitly using the this pointer to access member x

Explicitly using the this pointer to access member x

Using the dereferenced this
pointer and the dot operator

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 4646

Common Programming Error 21.7Common Programming Error 21.7

Attempting to use the member
selection operator (..) with a pointerpointer
to an object is a compilation error—
the dot member selection operator
may be used only with an lvaluelvalue such such
as an objectas an object’’s names name, a reference to
an object or a dereferenced pointer
to an object.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 4747

Using the this PointerUsing the this Pointer

Cascaded member-function calls
– Multiple functions are invoked in the
same statement.

– Enabled by member functions returning
the dereferenced this pointer

– Example
•• t.setMinutet.setMinute(30).(30).setSecondsetSecond(22);(22);

– Calls t.setMinutet.setMinute(30);(30);

– Then calls t.setSecondt.setSecond(22);(22);

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 4848

 1 // Fig. 21.18: Time.h

 2 // Cascading member function calls.

 3
 4 // Time class definition.

 5 // Member functions defined in Time.cpp.

 6 #ifndef TIME_H

 7 #define TIME_H

 8
 9 class Time

10 {
11 public:
12 Time(int = 0, int = 0, int = 0); // default constructor
13
14 // set functions (the Time & return types enable cascading)
15 Time &setTime(int, int, int); // set hour, minute, second
16 Time &setHour(int); // set hour
17 Time &setMinute(int); // set minute
18 Time &setSecond(int); // set second

set functions return Time & to enable cascading

Cascading Function Calls
using this Pointer

Cascading Function Calls
using this Pointer

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 4949

Cascading Function Calls
using this Pointer

Cascading Function Calls
using this Pointer

19
20 // get functions (normally declared const)
21 int getHour() const; // return hour
22 int getMinute() const; // return minute
23 int getSecond() const; // return second
24
25 // print functions (normally declared const)
26 void printUniversal() const; // print universal time
27 void printStandard() const; // print standard time
28 private:
29 int hour; // 0 - 23 (24-hour clock format)
30 int minute; // 0 - 59
31 int second; // 0 - 59
32 }; // end class Time
33
34 #endif

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 5050

 1 // Fig. 21.19: Time.cpp

 2 // Member-function definitions for Time class.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include <iomanip>

 7 using std::setfill;

 8 using std::setw;

 9
10 #include "Time.h" // Time class definition
11
12 // constructor function to initialize private data;
13 // calls member function setTime to set variables;
14 // default values are 0 (see class definition)
15 Time::Time(int hr, int min, int sec)
16 {
17 setTime(hr, min, sec);
18 } // end Time constructor
19
20 // set values of hour, minute, and second
21 Time &Time::setTime(int h, int m, int s) // note Time & return
22 {
23 setHour(h);
24 setMinute(m);
25 setSecond(s);
26 return *this; // enables cascading
27 } // end function setTime

Returning dereferenced this pointer enables cascading

Cascading Function Calls
using this Pointer

Cascading Function Calls
using this Pointer

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 5151

28
29 // set hour value
30 Time &Time::setHour(int h) // note Time & return
31 {
32 hour = (h >= 0 && h < 24) ? h : 0; // validate hour
33 return *this; // enables cascading
34 } // end function setHour
35
36 // set minute value
37 Time &Time::setMinute(int m) // note Time & return
38 {
39 minute = (m >= 0 && m < 60) ? m : 0; // validate minute
40 return *this; // enables cascading
41 } // end function setMinute
42
43 // set second value
44 Time &Time::setSecond(int s) // note Time & return
45 {
46 second = (s >= 0 && s < 60) ? s : 0; // validate second
47 return *this; // enables cascading
48 } // end function setSecond
49
50 // get hour value
51 int Time::getHour() const
52 {
53 return hour;
54 } // end function getHour

Cascading Function Calls
using this Pointer

Cascading Function Calls
using this Pointer

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 5252

55
56 // get minute value
57 int Time::getMinute() const
58 {
59 return minute;
60 } // end function getMinute
61
62 // get second value
63 int Time::getSecond() const
64 {
65 return second;
66 } // end function getSecond
67
68 // print Time in universal-time format (HH:MM:SS)
69 void Time::printUniversal() const
70 {
71 cout << setfill('0') << setw(2) << hour << ":"
72 << setw(2) << minute << ":" << setw(2) << second;
73 } // end function printUniversal
74
75 // print Time in standard-time format (HH:MM:SS AM or PM)
76 void Time::printStandard() const
77 {
78 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)
79 << ":" << setfill('0') << setw(2) << minute
80 << ":" << setw(2) << second << (hour < 12 ? " AM" : " PM");
81 } // end function printStandard

Cascading Function Calls
using this Pointer

Cascading Function Calls
using this Pointer

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 5353

 1 // Fig. 21.20: fig21_20.cpp

 2 // Cascading member function calls with the this pointer.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "Time.h" // Time class definition

 8
 9 int main()

10 {
11 Time t; // create Time object
12
13 // cascaded function calls
14 t.setHour(18).setMinute(30).setSecond(22);
15
16 // output time in universal and standard formats
17 cout << "Universal time: ";
18 t.printUniversal();
19
20 cout << "\nStandard time: ";
21 t.printStandard();
22
23 cout << "\n\nNew standard time: ";
24
25 // cascaded function calls
26 t.setTime(20, 20, 20).printStandard();
27 cout << endl;
28 return 0;
29 } // end main

Cascaded function calls using the reference
returned by one function call to invoke the next

Note that these calls must appear in the
order shown, because printStandard

does not return a reference to t

Cascading Function Calls
using this Pointer

Cascading Function Calls
using this Pointer

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 5454

Cascading Function Calls
using this Pointer

Cascading Function Calls
using this Pointer

Universal time: 18:30:22
Standard time: 6:30:22 PM

New standard time: 8:20:20 PM

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 5555

21.6 Dynamic Memory
Management:Operators new and delete

21.6 Dynamic Memory
Management:Operators new and delete

Dynamic memory management
– Enables programmers to allocate and
deallocate memory for any built-in or
user-defined type.

– Performed by operators newnew and
deletedelete..

– For example, dynamically allocating
memory for an array instead of using a
fixed-size array.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 5656

Operators new and delete Operators new and delete
Operator newnew

– Allocates (i.e., reserves) storage of the proper size for
an object at execution time

– Calls a constructor to initialize the object.
– Returns a pointer of the type specified to the right of
newnew.

– Can be used to dynamically allocate any fundamental type
(such as intint or doubledouble) or any class type.

The Free store (referred to as the heap)
– Region of memory assigned to each program for storing

objects created at execution time.

Example:
Time *Time *timePtrtimePtr
timePtrtimePtr = new Time;= new Time;

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 5757

Operators new and deleteOperators new and delete

Operator deletedelete

– Destroys a dynamically allocated object.
– Calls the destructor for the object.
– Deallocates (i.e., releases) memory from
the free store.

– The memory can then be reused by the
system to allocate other objects.

Example:
delete delete timePtrtimePtr;;

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 5858

Operators new and delete Operators new and delete

Initializing an object allocated by newnew

– Initializer for a newly created
fundamental-type variable.
• Example

–– double *ptr = new double(3.14159);double *ptr = new double(3.14159);

– Specify a comma-separated list of
arguments to the constructor of an
object.
• Example

–– Time *timePtrTime *timePtr == newnew Time(12, 45, 0);Time(12, 45, 0);

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 5959

Operators new and delete Operators new and delete

newnew operator can be used to allocate
arrays dynamically.
– Dynamically allocate a 10-element
integer array:
int *gradesArray = new int[10];

– Size of a dynamically allocated array
• Specified using any integral expression that
can be evaluated at execution time.

mulePtr *Mule = new Mules[mules_in];

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 6060

Operators new and delete Operators new and delete
Delete a dynamically allocated array:
delete [] gradesArray;delete [] gradesArray;

– This deallocates the array to which gradesArraygradesArray points.
– If the pointer points to an array of objects,

• It first calls the destructor for every object in the
array.

• Then it deallocates the memory.
– If the statement did not include the square brackets ([][])

and gradesArraygradesArray pointed to an array of objects
• Only the first object in the array would have a destructor

call.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 6161

21.7 static Class Members21.7 static Class Members

staticstatic data member
– Only one copy of a variable shared by all
objects of a class.
• The member is “Class-wide” information.
• A property of the class shared by all
instances, not a property of a specific object
of the class.

– Declaration begins with keyword staticstatic

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 6262

static Class Membersstatic Class Members
Example
– Video game with Martians and other
space creatures

– Each MartianMartian needs to know the martianCountmartianCount..

–– martianCountmartianCount should be staticstatic class-wide data.
– Every MartianMartian can access martianCountmartianCount as if it

were a data member of that MartianMartian

– Only one copy of martianCountmartianCount exists.

– May seem like global variables but static
has class scope.

– Can be declared publicpublic, privateprivate or
protectedprotected.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 6363

static Class Membersstatic Class Members
Fundamental-type staticstatic data members

• Initialized by default to 0.
• If you want a different initial value, a static data

member can be initialized once (and only once).
const staticconst static data member of int or enum type

• Can be initialized in its declaration in the class
definition.

All other staticstatic data members
• Must be defined at file scope (i.e., outside the body

of the class definition)
• Can be initialized only in those definitions.

staticstatic data members of class types (i.e., staticstatic member
objects) that have default constructors

• Need not be initialized because their default
constructors will be called.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 6464

static Class Membersstatic Class Members
Exists even when no objects of the class exist.
– To access a public staticpublic static class member when no

objects of the class exist.
• Prefix the class name and the binary scope resolution

operator (::::) to the name of the data member.
– Example

»» Martian::martianCountMartian::martianCount

– Also accessible through any object of that class
• Use the object’s name, the dot operator and the

name of the member.
– Example

»» myMartian.martianCountmyMartian.martianCount

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 6565

static Class Membersstatic Class Members
staticstatic member function
–– Is a service of the Is a service of the classclass, not of a specific object of the

class.
staticstatic is applied to an item at file scope.
– That item becomes known only in that file.
– The staticstatic members of the class need to be available

from any client code that accesses the file.
• So we cannot declare them staticstatic in the .cpp file—

we declare them staticstatic only in the .h file.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 6666

static class member Examplestatic class member Example
 1 // Fig. 21.21: Employee.h

 2 // Employee class definition.

 3 #ifndef EMPLOYEE_H

 4 #define EMPLOYEE_H

 5
 6 class Employee

 7 {

 8 public:

 9 Employee(const char * const, const char * const); // constructor

10 ~Employee(); // destructor
11 const char *getFirstName() const; // return first name
12 const char *getLastName() const; // return last name
13
14 // static member function
15 static int getCount(); // return number of objects instantiated
16 private:
17 char *firstName;
18 char *lastName;
19
20 // static data
21 static int count; // number of objects instantiated
22 }; // end class Employee
23
24 #endif

Function prototype for static member function

static data member keeps track of number
of Employee objects that currently exist

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 6767

static class member Examplestatic class member Example
 1 // Fig. 21.22: Employee.cpp

 2 // Member-function definitions for class Employee.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <cstring> // strlen and strcpy prototypes

 8 using std::strlen;

 9 using std::strcpy;

10
11 #include "Employee.h" // Employee class definition
12
13 // define and initialize static data member at file scope
14 int Employee::count = 0;
15
16 // define static member function that returns number of
17 // Employee objects instantiated (declared static in Employee.h)
18 int Employee::getCount()
19 {
20 return count;
21 } // end static function getCount

static data member is defined and
initialized at file scope in the .cpp file

static member function can access
only static data, because the function

might be called when no objects exist

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 6868

22
23 // constructor dynamically allocates space for first and last name and
24 // uses strcpy to copy first and last names into the object
25 Employee::Employee(const char * const first, const char * const last)
26 {
27 firstName = new char[strlen(first) + 1];
28 strcpy(firstName, first);
29
30 lastName = new char[strlen(last) + 1];
31 strcpy(lastName, last);
32
33 count++; // increment static count of employees
34
35 cout << "Employee constructor for " << firstName
36 << ' ' << lastName << " called." << endl;
37 } // end Employee constructor
38
39 // destructor deallocates dynamically allocated memory
40 Employee::~Employee()
41 {
42 cout << "~Employee() called for " << firstName
43 << ' ' << lastName << endl;
44
45 delete [] firstName; // release memory
46 delete [] lastName; // release memory
47
48 count--; // decrement static count of employees
49 } // end ~Employee destructor

Dynamically allocating char arrays

Non-static member function (i.e., constructor)
can modify the class’s static data members

Deallocating memory reserved for arrays

static class member Examplestatic class member Example

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 6969

static class member Examplestatic class member Example
50
51 // return first name of employee
52 const char *Employee::getFirstName() const
53 {
54 // const before return type prevents client from modifying
55 // private data; client should copy returned string before
56 // destructor deletes storage to prevent undefined pointer
57 return firstName;
58 } // end function getFirstName
59
60 // return last name of employee
61 const char *Employee::getLastName() const
62 {
63 // const before return type prevents client from modifying
64 // private data; client should copy returned string before
65 // destructor deletes storage to prevent undefined pointer
66 return lastName;
67 } // end function getLastName

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 7070

static class member Examplestatic class member Example
 1 // Fig. 21.23: fig21_23.cpp

 2 // Driver to test class Employee.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "Employee.h" // Employee class definition

 8
 9 int main()

10 {
11 // use class name and binary scope resolution operator to
12 // access sta
tic number function getCount

13 cout << "Number of employees before instantiation of any objects is "
14 << Employee::getCount() << endl; // use class name
15
16 // use new to dynamically create two new Employees
17 // operator new also calls the object's constructor
18 Employee *e1Ptr = new Employee("Susan", "Baker");
19 Employee *e2Ptr = new Employee("Robert", "Jones");
20
21 // call getCount on first Employee object
22 cout << "Number of employees after objects are instantiated is "
23 << e1Ptr->getCount();
24
25 cout << "\n\nEmployee 1: "
26 << e1Ptr->getFirstName() << " " << e1Ptr->getLastName()
27 << "\nEmployee 2: "
28 << e2Ptr->getFirstName() << " " << e2Ptr->getLastName() << "\n\n";

Calling static member function using class
name and binary scope resolution operator

Dynamically creating Employees with new

Calling a static member function
through a pointer to an object of the class

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 7171

static class member Examplestatic class member Example
29
30 delete e1Ptr; // deallocate memory
31 e1Ptr = 0; // disconnect pointer from free-store space
32 delete e2Ptr; // deallocate memory
33 e2Ptr = 0; // disconnect pointer from free-store space
34
35 // no objects exist, so call static member function getCount again
36 // using the class name and the binary scope resolution operator
37 cout << "Number of employees after objects are deleted is "
38 << Employee::getCount() << endl;
39 return 0;
40 } // end main

Number of employees before instantiation of any objects is 0
Employee constructor for Susan Baker called.
Employee constructor for Robert Jones called.
Number of employees after objects are instantiated is 2

Employee 1: Susan Baker

Employee 2: Robert Jones

~Employee() called for Susan Baker
~Employee() called for Robert Jones
Number of employees after objects are deleted is 0

Releasing memory to which a pointer points

Disconnecting a pointer from any space in memory

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 7272

static Class Membersstatic Class Members
Declare a member function staticstatic

– If it does not access non-staticstatic data members or
non-staticstatic member functions of the class.

A staticstatic member function does not have a thisthis
pointer.
staticstatic data members and staticstatic member functions
exist independently of any objects of a class.
When a staticstatic member function is called, there might
not be any objects of its class in memory.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 7373

Abstract data types (ADTs)Abstract data types (ADTs)

– Essentially ways of representing real-world
notions to some satisfactory level of precision
within a computer system.

– Types like intint, , doubledouble, , charchar and others are
all ADTs.
• e.g., intint is an abstract representation of an
integer.

– Captures two notions:
• Data representation
• Operations that can be performed on the
data.

–– C++ classes implement ADTs and their services.C++ classes implement ADTs and their services.

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 7474

Array Abstract Data TypeArray Abstract Data Type
Many array operations not built into
C++
– e.g., subscript range checking

Programmers can develop an array
ADT as a class that is preferable to
“raw” arrays
– Can provide many helpful new capabilities

C++ Standard Library class template
vectorvector..

Systems Programming: Deeper into C++ ClassesSystems Programming: Deeper into C++ Classes 7575

SummarySummarySummary
constconst objects and constconst member
functions
Member Composition Example
Friend function Example
thisthis pointer Example
Dynamic memory management
–– newnew and deletedelete operators
staticstatic class members
Abstract Data Types

	Classes:A Deeper Look
	21.2 const (Constant) Objects and const Member Functions
	const (Constant) Objects and const Member Functions
	Software Engineering Observation 21.2
	const Example
	Member Initializer
	Software Engineering Observation 21.3
	Common Programming Error 21.5
	Software Engineering Observation 21.4
	21.3 Composition:Objects as Members of Classes
	Composition: Objects as Members of Classes
	Software Engineering Observation 21.5
	Common Programming Error 21.6
	21.4 friend Functions and friend Classes
	friend Functions and friend Classes
	21.5 Using the this Pointer
	21.5 Using the this Pointer
	Common Programming Error 21.7
	Using the this Pointer
	21.6 Dynamic Memory Management:Operators new and delete
	Operators new and delete
	
	Operators new and delete
	Operators new and delete
	Operators new and delete
	21.7 static Class Members
	static Class Members
	static Class Members
	static Class Members
	static Class Members
	static Class Members
	Abstract data types (ADTs)
	Array Abstract Data Type

