CS2303 Systems Programming Concepts

Lab 4

Binary Trees in C or C++

Program 4 involves an insertion sort using trees. Lab 4 is intended as a simple step towards the fourth programming assignment. This program can be completed using C or C++. We will not cover C++ in lecture prior to the lab, but since Program 4 has to be done in C++ you may want to use C++ if you have previous experience with C++. The form of the input to lab4 is similar to lab3 with one command line argument:

./lab4 students

and an example is:

./lab4 45

Assume lab4 reads in **students** lines of input from a script file where each line of input takes the form:

studentid g1 g2 g3

where **studentid** is a 9-digit integer student id and **g1 g2 g3** are student scores between 0 and 100 on three assignments. The test scores are to be read in as floating point numbers.

For lab4, you are to create at least two functions to operate on a binary tree: insert, printtree.

insert

The insert function builds and maintains a binary tree in studentid order. insert takes one student's information and inserts a node for that student in the correct place in the binary tree. Each node should contain the studentid, the three test scores and the average test score.

Note – For this lab you need to add some validity checks of the input data. Assume that studentid are unique and that there should only be one entry per student.

printtree

The **printtree** function traverses the binary tree and prints out all the nodes in the binary tree in **studentid** order. Print out the information one line per student and include a header line to identify the columns of the output.

4 points

CS2303 Systems Programming Concepts

*C*08

Lab 4 main program

The lab4 program reads in an input source line, creates a binary tree node, and inserts this node in the tree. Once the tree is completely built, the program prints out **all** of an individual student's information in **studentid** order from lowest to highest number.

Lab 4 Assignment

- 0. Prior to coming to the lab prepare a preliminary solution to the program above.
- 1. Create a make file.
- 2. Test the program under your own test data input from the terminal.
- 3. Run the program on the provided test data file 'lab4.dat' redirecting the output to binarytree.out.
- 4. Create a README file that contains any useful information to assist in the grading of your lab program.
- 5. Create a tarred file that contains all the source and header files, the make file and the README file and your output file.
- 6. Use the Unix version of the 'turnin' to turn-in the tarred file. [The deadline for all lab turn-ins is 24 hours after the beginning of your assigned lab.]