

 CS2303 Systems Programming Concepts C14

 1

Lab 3 5 points

Command Line Arguments and Event List Operations

Both programs 3 and 5 involve event-driven simulation of systems/network entities. The key data structure

in event-driven simulation is a linked list known as an event list. This lab introduces event list operations,

working with structs and pointers and inputting parameters to a C program using Linux/Unix command line

arguments.

Your lab 3 program begins by reading in one command line argument sources. Thus, the form

is:
 ./lab3 sources

and an examples is:

 ./lab3 10

Assume lab3 reads in sources lines of input from a script file where each line of input takes the form:

 process-id arrival_time cpu_time

where arrival_time and cpu_time are in simulation units (i.e. 100 milliseconds)

For example, the input line:

 20166 30 205

indicates that process 20166 arrives at the scheduler at simulated time 3 seconds needing 20.5 seconds of

CPU service. For each line of input, your program needs to create a node structure.

For lab 3, you are to develop at least three functions to operate on an event list: add_event,

get_nextevent, and print_eventlist.

add_event

Assume an event list built as a linked list where events are stored as structures in chronological order

(based on process arrival time) such that the pointer to the event list points to the event that is the first event

to occur in simulated time and the last node on the linked list chain (before the NULL pointer) points to the

event that will occur the farthest into the future of all the events on the event list.

 CS2303 Systems Programming Concepts C14

 2

The add_event function receives a pointer to a node structure created in conjunction with an input line and

a pointer to the event list and inserts this new event node into the event list in the proper place based on the

node’s arrival_time.

get_nextevent

The get_nextevent function uses a pointer to the event list to return the next event to occur in simulated

time (i.e., the first node in the event list) and deletes this event from the event list.

print_eventlist

The printlist function uses a pointer to the event list to print out all the information for each event on the

event list in chronological order.

Depending on your design, you may want to write two other functions, create_node and print_node. While

these two functions are NOT required for lab 3, you may find them useful for debugging program 3.

Lab 3 main program

The lab3 main program uses the sources command line argument to read in sources input lines. For each

input line, it creates an event list node and then adds this node to the event list. Once the event list is

completely built, it is printed out. Next, main takes the first event off the event list, prints out its contents,

takes the second event off the event list, prints out its content and finally prints out the current event list.

Lab 3 Assignment

0. Prior to coming to the lab prepare a preliminary solution to the program above.

1. Create a make file.

2. Test the program under your own test data input from the terminal.

3. Run the program on the provided test data file ‘lab3.dat’ redirecting the output to

eventlist.txt.

4. Create a README file that contains any useful information to assist in the grading of

your lab program.

5. Create a tarred file that contains all the source and header files, the make file and the

README file and your output file.

6. Use the Unix version of the ‘turnin’ to turn-in the tarred file. [The deadline for all lab

turn-ins is 24 hours after the beginning of your assigned lab.]

