
C++
Polymorphism

C++C++
PolymorphismPolymorphism

Systems ProgrammingSystems Programming

Systems Programming: PolymorphismSystems Programming: Polymorphism 22

C++ PolymorphismC++ PolymorphismC++ Polymorphism
Polymorphism Examples
Relationships Among Objects in an Inheritance Hierarchy
– Invoking Base-Class Functions from Derived-Class

Objects
– Aiming Derived-Class Pointers at Base-Class

Objects
– Derived-Class Member-Function Calls via Base-

Class Pointers
– Virtual Functions

Summary of the Allowed Assignments Between Base-Class
and Derived-Class Objects and Pointers
Type Fields and switchswitch Statements
Abstract Classes and Pure virtualvirtual Functions
Polymorphism Case Study

Systems Programming: PolymorphismSystems Programming: Polymorphism 33

24.1 Introduction24.1 Introduction
Polymorphism with inheritance hierarchies
– “Program in the general” vs. “program in the specific”
– Process objects of classes that are part of the same

hierarchy as if they are all objects of the base class.
– Each object performs the correct tasks for that object’s

type
• Different actions occur depending on the type of

object.
– New classes can be added with little or not modification

to existing code.

Systems Programming: PolymorphismSystems Programming: Polymorphism 44

Polymorphism ExamplesPolymorphism Examples
Example Animal hierarchy
Animal base class – every derived class has a
function movemove..

Different animal objects are maintained as a
vectorvector of AnimalAnimal pointers.
Program issues same message (move) to each animal
generically.
Proper function gets called
– A FishFish will move by swimming.
– A FrogFrog will move by jumping.
– A BirdBird will move by flying.

Systems Programming: PolymorphismSystems Programming: Polymorphism 55

24.2 Polymorphism Examples24.2 Polymorphism Examples
Polymorphism occurs when a program invokes a virtualvirtual function

through a base-class pointer or reference.
C++ dynamically chooses the correct function for the class C++ dynamically chooses the correct function for the class
from which the object was instantiated.from which the object was instantiated.

Example: SpaceObjectSpaceObjectss
– Video game manipulates objects of types that inherit from
SpaceObjectSpaceObject, which contains member function drawdraw..

– Function drawdraw implemented appropriately for the different
derived classes.

– A screen-manager program maintains a container of
SpaceObjectSpaceObject pointers.

– Call drawdraw on each object using SpaceObjectSpaceObject pointers
• The proper drawdraw function is called based on object’s

type.
– A new class derived from SpaceObjectSpaceObject can be added

without affecting the screen manager.

Systems Programming: PolymorphismSystems Programming: Polymorphism 66

24.3 Relationships among Objects in an
Inheritance Hierarchy

24.3 Relationships among Objects in an
Inheritance Hierarchy

Aim base-class pointer at base-class object
– Invoke base-class functionality

Aim derived-class pointer at derived-class object
– Invoke derived-class functionality

Aim base-class pointer at derived-class object
– Because derived-class object is an object of base class
– Invoke base-class functionality
–– Invoked functionality depends on the type of the handle Invoked functionality depends on the type of the handle

used to invoke the function, not on the type of the used to invoke the function, not on the type of the
object to which the handle pointsobject to which the handle points.

virtualvirtual functions
– Make it possible to invoke the object type’s

functionality, rather than invoke the handle type’s
functionality.

–– Crucial to implementing polymorphic behaviorCrucial to implementing polymorphic behavior.

Systems Programming: PolymorphismSystems Programming: Polymorphism 77

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

 1 // Fig. 24.1: CommissionEmployee.h

 2 // CommissionEmployee class definition represents a commission employee.

 3 #ifndef COMMISSION_H

 4 #define COMMISSION_H

 5
 6 #include <string> // C++ standard string class

 7 using std::string;

 8
 9 class CommissionEmployee

10 {
11 public:
12 CommissionEmployee(const string &, const string &, const string &,
13 double = 0.0, double = 0.0);
14
15 void setFirstName(const string &); // set first name
16 string getFirstName() const; // return first name
17
18 void setLastName(const string &); // set last name
19 string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const string &); // set SSN
22 string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount

Systems Programming: PolymorphismSystems Programming: Polymorphism 88

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

26
27 void setCommissionRate(double); // set commission rate
28 double getCommissionRate() const; // return commission rate
29
30 double earnings() const; // calculate earnings
31 void print() const; // print CommissionEmployee object
32 private:
33 string firstName;
34 string lastName;
35 string socialSecurityNumber;
36 double grossSales; // gross weekly sales
37 double commissionRate; // commission percentage
38 }; // end class CommissionEmployee
39
40 #endif

Function print will be redefined
in derived class to print the

employee’s information

Function earnings will be
redefined in derived classes to

calculate the employee’s earnings

Systems Programming: PolymorphismSystems Programming: Polymorphism 99

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

 1 // Fig. 24.2: CommissionEmployee.cpp

 2 // Class CommissionEmployee member-function definitions.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include "CommissionEmployee.h" // CommissionEmployee class definition

 7
 8 // constructor

 9 CommissionEmployee::CommissionEmployee(

10 const string &first, const string &last, const string &ssn,
11 double sales, double rate)
12 : firstName(first), lastName(last), socialSecurityNumber(ssn)
13 {
14 setGrossSales(sales); // validate and store gross sales
15 setCommissionRate(rate); // validate and store commission rate
16 } // end CommissionEmployee constructor
17
18 // set first name
19 void CommissionEmployee::setFirstName(const string &first)
20 {
21 firstName = first; // should validate
22 } // end function setFirstName
23
24 // return first name
25 string CommissionEmployee::getFirstName() const
26 {
27 return firstName;
28 } // end function getFirstName

Systems Programming: PolymorphismSystems Programming: Polymorphism 1010

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

29
30 // set last name
31 void CommissionEmployee::setLastName(const string &last)
32 {
33 lastName = last; // should validate
34 } // end function setLastName
35
36 // return last name
37 string CommissionEmployee::getLastName() const
38 {
39 return lastName;
40 } // end function getLastName
41
42 // set social security number
43 void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end function setSocialSecurityNumber
47
48 // return social security number
49 string CommissionEmployee::getSocialSecurityNumber() const
50 {
51 return socialSecurityNumber;
52 } // end function getSocialSecurityNumber
53
54 // set gross sales amount
55 void CommissionEmployee::setGrossSales(double sales)
56 {
57 grossSales = (sales < 0.0) ? 0.0 : sales;
58 } // end function setGrossSales

Systems Programming: PolymorphismSystems Programming: Polymorphism 1111

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

59
60 // return gross sales amount
61 double CommissionEmployee::getGrossSales() const
62 {
63 return grossSales;
64 } // end function getGrossSales
65
66 // set commission rate
67 void CommissionEmployee::setCommissionRate(double rate)
68 {
69 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;
70 } // end function setCommissionRate
71
72 // return commission rate
73 double CommissionEmployee::getCommissionRate() const
74 {
75 return commissionRate;
76 } // end function getCommissionRate
77
78 // calculate earnings
79 double CommissionEmployee::earnings() const
80 {
81 return getCommissionRate() * getGrossSales();
82 } // end function earnings

Calculate earnings based on
commission rate and gross sales

Systems Programming: PolymorphismSystems Programming: Polymorphism 1212

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

83
84 // print CommissionEmployee object
85 void CommissionEmployee::print() const
86 {
87 cout << "commission employee: "
88 << getFirstName() << ' ' << getLastName()
89 << "\nsocial security number: " << getSocialSecurityNumber()
90 << "\ngross sales: " << getGrossSales()
91 << "\ncommission rate: " << getCommissionRate();
92 } // end function print

Display name, social
security number, gross

sales and commission rate

Systems Programming: PolymorphismSystems Programming: Polymorphism 1313

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

 1 // Fig. 24.3: BasePlusCommissionEmployee.h

 2 // BasePlusCommissionEmployee class derived from class

 3 // CommissionEmployee.

 4 #ifndef BASEPLUS_H

 5 #define BASEPLUS_H

 6
 7 #include <string> // C++ standard string class

 8 using std::string;

 9
10 #include "CommissionEmployee.h" // CommissionEmployee class declaration
11
12 class BasePlusCommissionEmployee : public CommissionEmployee
13 {
14 public:
15 BasePlusCommissionEmployee(const string &, const string &,
16 const string &, double = 0.0, double = 0.0, double = 0.0);
17
18 void setBaseSalary(double); // set base salary
19 double getBaseSalary() const; // return base salary
20
21 double earnings() const; // calculate earnings
22 void print() const; // print BasePlusCommissionEmployee object
23 private:
24 double baseSalary; // base salary
25 }; // end class BasePlusCommissionEmployee
26
27 #endif

Redefine functions
earnings and print

Systems Programming: PolymorphismSystems Programming: Polymorphism 1414

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

 1 // Fig. 24.4: BasePlusCommissionEmployee.cpp

 2 // Class BasePlusCommissionEmployee member-function definitions.

 3 #include <iostream>

 4 using std::cout;

 5
 6 // BasePlusCommissionEmployee class definition

 7 #include "BasePlusCommissionEmployee.h"

 8
 9 // constructor

10 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
11 const string &first, const string &last, const string &ssn,
12 double sales, double rate, double salary)
13 // explicitly call base-class constructor
14 : CommissionEmployee(first, last, ssn, sales, rate)
15 {
16 setBaseSalary(salary); // validate and store base salary
17 } // end BasePlusCommissionEmployee constructor
18
19 // set base salary
20 void BasePlusCommissionEmployee::setBaseSalary(double salary)
21 {
22 baseSalary = (salary < 0.0) ? 0.0 : salary;
23 } // end function setBaseSalary
24
25 // return base salary
26 double BasePlusCommissionEmployee::getBaseSalary() const
27 {
28 return baseSalary;
29 } // end function getBaseSalary

Systems Programming: PolymorphismSystems Programming: Polymorphism 1515

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

30
31 // calculate earnings
32 double BasePlusCommissionEmployee::earnings() const
33 {
34 return getBaseSalary() + CommissionEmployee::earnings();
35 } // end function earnings
36
37 // print BasePlusCommissionEmployee object
38 void BasePlusCommissionEmployee::print() const
39 {
40 cout << "base-salaried ";
41
42 // invoke CommissionEmployee's print function
43 CommissionEmployee::print();
44
45 cout << "\nbase salary: " << getBaseSalary();
46 } // end function print

Redefined earnings function
incorporates base salary

Redefined print function displays additional
BasePlusCommissionEmployee details

Systems Programming: PolymorphismSystems Programming: Polymorphism 1616

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

 1 // Fig. 24.5: fig24_05.cpp

 2 // Aiming base-class and derived-class pointers at base-class

 3 // and derived-class objects, respectively.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7 using std::fixed;

 8
 9 #include <iomanip>

10 using std::setprecision;
11
12 // include class definitions
13 #include "CommissionEmployee.h"
14 #include "BasePlusCommissionEmployee.h"
15
16 int main()
17 {
18 // create base-class object
19 CommissionEmployee commissionEmployee(
20 "Sue", "Jones", "222-22-2222", 10000, .06);
21
22 // create base-class pointer
23 CommissionEmployee *commissionEmployeePtr = 0;

Systems Programming: PolymorphismSystems Programming: Polymorphism 1717

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

24
25 // create derived-class object
26 BasePlusCommissionEmployee basePlusCommissionEmployee(
27 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
28
29 // create derived-class pointer
30 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0;
31
32 // set floating-point output formatting
33 cout << fixed << setprecision(2);
34
35 // output objects commissionEmployee and basePlusCommissionEmployee
36 cout << "Print base-class and derived-class objects:\n\n";
37 commissionEmployee.print(); // invokes base-class print
38 cout << "\n\n";
39 basePlusCommissionEmployee.print(); // invokes derived-class print
40
41 // aim base-class pointer at base-class object and print
42 commissionEmployeePtr = &commissionEmployee; // perfectly natural
43 cout << "\n\n\nCalling print with base-class pointer to "
44 << "\nbase-class object invokes base-class print function:\n\n";
45 commissionEmployeePtr->print(); // invokes base-class print

Aiming base-class pointer at base-class object
and invoking base-class functionality

Systems Programming: PolymorphismSystems Programming: Polymorphism 1818

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

46
47 // aim derived-class pointer at derived-class object and print
48 basePlusCommissionEmployeePtr = &basePlusCommissionEmployee; // natural
49 cout << "\n\n\nCalling print with derived-class pointer to "
50 << "\nderived-class object invokes derived-class "
51 << "print function:\n\n";
52 basePlusCommissionEmployeePtr->print(); // invokes derived-class print
53
54 // aim base-class pointer at derived-class object and print
55 commissionEmployeePtr = &basePlusCommissionEmployee;
56 cout << "\n\n\nCalling print with base-class pointer to "
57 << "derived-class object\ninvokes base-class print "
58 << "function on that derived-class object:\n\n";
59 commissionEmployeePtr->print(); // invokes base-class print
60 cout << endl;
61 return 0;
62 } // end main

Aiming derived-class pointer at
derived-class object and invoking

derived-class functionality

Aiming base-class pointer at
derived-class object and

invoking base-class functionality

Systems Programming: PolymorphismSystems Programming: Polymorphism 1919

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

Print base-class and derived-class objects:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Calling print with base-class pointer to
base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06
 (Continued at top of next slide…)

Systems Programming: PolymorphismSystems Programming: Polymorphism 2020

Invoking Base-Class Functions from
Derived-Class Objects

Invoking Base-Class Functions from
Derived-Class Objects

 (…Continued from bottom of previous slide)

Calling print with derived-class pointer to
derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Calling print with base-class pointer to derived-class object
invokes base-class print function on that derived-class object:

commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04

Systems Programming: PolymorphismSystems Programming: Polymorphism 2121

24.3.2 Aiming Derived-Class Pointers
at Base-Class Objects

24.3.2 Aiming Derived-Class Pointers
at Base-Class Objects

Aim a derived-class pointer at a base-
class object.
– C++ compiler generates error.

•• CommissionEmployeeCommissionEmployee (base-class object) is
not a BasePlusCommissionEmployeeBasePlusCommissionEmployee
(derived-class object)

– If this were to be allowed, programmer
could then attempt to access derived-
class members which do not exist.
• Could modify memory being used for other
data.

Systems Programming: PolymorphismSystems Programming: Polymorphism 2222

Aiming Derived-Class Pointers at
Base-Class Objects

Aiming Derived-Class Pointers at
Base-Class Objects

 1 // Fig. 24.6: fig24_06.cpp

 2 // Aiming a derived-class pointer at a base-class object.

 3 #include "CommissionEmployee.h"

 4 #include "BasePlusCommissionEmployee.h"

 5
 6 int main()

 7 {

 8 CommissionEmployee commissionEmployee(

 9 "Sue", "Jones", "222-22-2222", 10000, .06);

10 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0;
11
12 // aim derived-class pointer at base-class object
13 // Error: a CommissionEmployee is not a BasePlusCommissionEmployee
14 basePlusCommissionEmployeePtr = &commissionEmployee;
15 return 0;
16 } // end main

Cannot assign base-class object to derived-class
pointer because is-a relationship does not apply

Systems Programming: PolymorphismSystems Programming: Polymorphism 2323

Borland C++ command-line compiler error messages:

Error E2034 Fig24_06\fig24_06.cpp 14: Cannot convert 'CommissionEmployee *'
 to 'BasePlusCommissionEmployee *' in function main()

GNU C++ compiler error messages:

Fig24_06.cpp:14: error: invalid conversion from `CommissionEmployee*' to
 `BasePlusCommissionEmployee*'

Microsoft Visual C++.NET compiler error messages:

C:\examples\ch24\Fig24_06\fig24_06.cpp(14) : error C2440:
 '=' : cannot convert from 'CommissionEmployee *__w64 ' to

 'BasePlusCommissionEmployee *'

 Cast from base to derived requires dynamic_cast or static_cast

Systems Programming: PolymorphismSystems Programming: Polymorphism 2424

24.3.3 Derived-Class Member-
Function Calls via Base-Class Pointers

24.3.3 Derived-Class Member-
Function Calls via Base-Class Pointers

Aiming base-class pointer at derived-class
object.
– Calling functions that exist in base class causes

base-class functionality to be invoked.
– Calling functions that do not exist in base class

(may exist in derived class) will result in error.
• Derived-class members cannot be accessed
from base-class pointers.

• However, this can be accomplished using
downcasting (Section 13.8).

Systems Programming: PolymorphismSystems Programming: Polymorphism 2525

 1 // Fig. 24.7: fig24_07.cpp

 2 // Attempting to invoke derived-class-only member functions

 3 // through a base-class pointer.

 4 #include "CommissionEmployee.h"

 5 #include "BasePlusCommissionEmployee.h"

 6
 7 int main()

 8 {

 9 CommissionEmployee *commissionEmployeePtr = 0; // base class

10 BasePlusCommissionEmployee basePlusCommissionEmployee(
11 "Bob", "Lewis", "333-33-3333", 5000, .04, 300); // derived class
12
13 // aim base-class pointer at derived-class object
14 commissionEmployeePtr = &basePlusCommissionEmployee;
15
16 // invoke base-class member functions on derived-class
17 // object through base-class pointer
18 string firstName = commissionEmployeePtr->getFirstName();
19 string lastName = commissionEmployeePtr->getLastName();
20 string ssn = commissionEmployeePtr->getSocialSecurityNumber();
21 double grossSales = commissionEmployeePtr->getGrossSales();
22 double commissionRate = commissionEmployeePtr->getCommissionRate();
23
24 // attempt to invoke derived-class-only member functions
25 // on derived-class object through base-class pointer
26 double baseSalary = commissionEmployeePtr->getBaseSalary();
27 commissionEmployeePtr->setBaseSalary(500);
28 return 0;
29 } // end main

Cannot invoke derived-class-only
members from base-class pointer

Aiming base-class pointer
at derived-class object

Systems Programming: PolymorphismSystems Programming: Polymorphism 2626

Borland C++ command-line compiler error messages:

Error E2316 Fig24_07\fig24_07.cpp 26: 'getBaseSalary' is not a member of
 'CommissionEmployee' in function main()

Error E2316 Fig24_07\fig24_07.cpp 27: 'setBaseSalary' is not a member of
 'CommissionEmployee' in function main()

Microsoft Visual C++.NET compiler error messages:

C:\examples\ch24\Fig24_07\fig24_07.cpp(26) : error C2039:
 'getBaseSalary' : is not a member of 'CommissionEmployee'

 C:\cpphtp5_examples\ch24\Fig24_07\CommissionEmployee.h(10) :
 see declaration of 'CommissionEmployee'

C:\examples\ch24\Fig24_07\fig24_07.cpp(27) : error C2039:
 'setBaseSalary' : is not a member of 'CommissionEmployee'

 C:\examples\ch24\Fig24_07\CommissionEmployee.h(10) :
 see declaration of 'CommissionEmployee'

GNU C++ compiler error messages:

Fig24_07.cpp:26: error: `getBaseSalary' undeclared (first use this function)
fig24_07.cpp:26: error: (Each undeclared identifier is reported only once for
 each function it appears in.)

Fig24_07.cpp:27: error: `setBaseSalary' undeclared (first use this function)

Systems Programming: PolymorphismSystems Programming: Polymorphism 2727

24.3.4 Virtual Functions24.3.4 Virtual Functions
Normally the handlehandle determines which
class’s functionality to invoke.
With virtualvirtual functions
– The type of the object object being pointed to,
not the type of the handle, determines
which version of a virtualvirtual function to
invoke.

– This allows a program to dynamically (at
runtime rather than compile time)
determine which function to use.
• Referred to as dynamic bindingdynamic binding or late late
bindingbinding..

Systems Programming: PolymorphismSystems Programming: Polymorphism 2828

24.3.4 Virtual Functions24.3.4 Virtual Functions
Declared by preceding the function’s prototype with
the keyword virtualvirtual in the base class.

Example
virtual void draw () const;virtual void draw () const;

would appear in the base class ShapeShape.

If the program invokes a virtual function through a
base-class pointer to a derived-class object (e.g.,
shapePtrshapePtr-->draw() >draw()), the program will choose the), the program will choose the
correct derivedcorrect derived--class class draw draw function dynamically function dynamically
based on the object type.based on the object type.
Derived classes override virtual functionsoverride virtual functions to enable
polymorphic behaviorpolymorphic behavior.

Systems Programming: PolymorphismSystems Programming: Polymorphism 2929

24.3.4 Virtual Functions24.3.4 Virtual Functions
Once declared virtualvirtual, a function
remains virtualvirtual all the way down the
hierarchy.
When a virtualvirtual function is called by
referencing a specific object by name using
the dot member-selection operator(e.g.,
squareObject.drawsquareObject.draw()()), the function
invocation is resolved at compile time.{This
is static binding static binding and this is Not and this is Not
polymorphic behavior!polymorphic behavior!}
Dynamic binding with virtualvirtual functions
only occurs off pointer and reference
handles.

Systems Programming: PolymorphismSystems Programming: Polymorphism 3030

Virtual FunctionsVirtual Functions
 1 // Fig. 24.8: CommissionEmployee.h

 2 // CommissionEmployee class definition represents a commission employee.

 3 #ifndef COMMISSION_H

 4 #define COMMISSION_H

 5
 6 #include <string> // C++ standard string class

 7 using std::string;

 8
 9 class CommissionEmployee

10 {
11 public:
12 CommissionEmployee(const string &, const string &, const string &,
13 double = 0.0, double = 0.0);
14
15 void setFirstName(const string &); // set first name
16 string getFirstName() const; // return first name
17
18 void setLastName(const string &); // set last name
19 string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const string &); // set SSN
22 string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount

Systems Programming: PolymorphismSystems Programming: Polymorphism 3131

Virtual FunctionsVirtual Functions

26
27 void setCommissionRate(double); // set commission rate
28 double getCommissionRate() const; // return commission rate
29
30 virtual double earnings() const; // calculate earnings
31 virtual void print() const; // print CommissionEmployee object
32 private:
33 string firstName;
34 string lastName;
35 string socialSecurityNumber;
36 double grossSales; // gross weekly sales
37 double commissionRate; // commission percentage
38 }; // end class CommissionEmployee
39
40 #endif

Declaring earnings and print as virtual
allows them to be overridden, not redefined

Systems Programming: PolymorphismSystems Programming: Polymorphism 3232

Virtual FunctionsVirtual Functions
 1 // Fig. 24.9: BasePlusCommissionEmployee.h

 2 // BasePlusCommissionEmployee class derived from class

 3 // CommissionEmployee.

 4 #ifndef BASEPLUS_H

 5 #define BASEPLUS_H

 6
 7 #include <string> // C++ standard string class

 8 using std::string;

 9
10 #include "CommissionEmployee.h" // CommissionEmployee class declaration
11
12 class BasePlusCommissionEmployee : public CommissionEmployee
13 {
14 public:
15 BasePlusCommissionEmployee(const string &, const string &,
16 const string &, double = 0.0, double = 0.0, double = 0.0);
17
18 void setBaseSalary(double); // set base salary
19 double getBaseSalary() const; // return base salary
20
21 virtual double earnings() const; // calculate earnings
22 virtual void print() const; // print BasePlusCommissionEmployee object
23 private:
24 double baseSalary; // base salary
25 }; // end class BasePlusCommissionEmployee
26
27 #endif

Functions earnings and print are
already virtual – good practice to declare
virtual even when overriding function

Systems Programming: PolymorphismSystems Programming: Polymorphism 3333

Virtual FunctionsVirtual Functions
 1 // Fig. 24.10: fig24_10.cpp

 2 // Introducing polymorphism, virtual functions and dynamic binding.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6 using std::fixed;

 7
 8 #include <iomanip>

 9 using std::setprecision;

10
11 // include class definitions
12 #include "CommissionEmployee.h"
13 #include "BasePlusCommissionEmployee.h"
14
15 int main()
16 {
17 // create base-class object
18 CommissionEmployee commissionEmployee(
19 "Sue", "Jones", "222-22-2222", 10000, .06);
20
21 // create base-class pointer
22 CommissionEmployee *commissionEmployeePtr = 0;
23
24 // create derived-class object
25 BasePlusCommissionEmployee basePlusCommissionEmployee(
26 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
27
28 // create derived-class pointer
29 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0;

Systems Programming: PolymorphismSystems Programming: Polymorphism 3434

Virtual FunctionsVirtual Functions
30
31 // set floating-point output formatting
32 cout << fixed << setprecision(2);
33
34 // output objects using static binding
35 cout << "Invoking print function on base-class and derived-class "
36 << "\nobjects with static binding\n\n";
37 commissionEmployee.print(); // static binding
38 cout << "\n\n";
39 basePlusCommissionEmployee.print(); // static binding
40
41 // output objects using dynamic binding
42 cout << "\n\n\nInvoking print function on base-class and "
43 << "derived-class \nobjects with dynamic binding";
44
45 // aim base-class pointer at base-class object and print
46 commissionEmployeePtr = &commissionEmployee;
47 cout << "\n\nCalling virtual function print with base-class pointer"
48 << "\nto base-class object invokes base-class "
49 << "print function:\n\n";
50 commissionEmployeePtr->print(); // invokes base-class print

Aiming base-class pointer at
base-class object and invoking

base-class functionality

Systems Programming: PolymorphismSystems Programming: Polymorphism 3535

Virtual FunctionsVirtual Functions
51
52 // aim derived-class pointer at derived-class object and print
53 basePlusCommissionEmployeePtr = &basePlusCommissionEmployee;
54 cout << "\n\nCalling virtual function print with derived-class "
55 << "pointer\nto derived-class object invokes derived-class "
56 << "print function:\n\n";
57 basePlusCommissionEmployeePtr->print(); // invokes derived-class print
58
59 // aim base-class pointer at derived-class object and print
60 commissionEmployeePtr = &basePlusCommissionEmployee;
61 cout << "\n\nCalling virtual function print with base-class pointer"
62 << "\nto derived-class object invokes derived-class "
63 << "print function:\n\n";
64
65 // polymorphism; invokes BasePlusCommissionEmployee's print;
66 // base-class pointer to derived-class object
67 commissionEmployeePtr->print();
68 cout << endl;
69 return 0;
70 } // end main

Aiming derived-class pointer at
derived-class object and invoking

derived-class functionality

Aiming base-class pointer at derived-class
object and invoking derived-class functionality

via polymorphism and virtual functions

Systems Programming: PolymorphismSystems Programming: Polymorphism 3636

Invoking print function on base-class and derived-class

objects with static binding

commission employee: Sue Jones

social security number: 222-22-2222

gross sales: 10000.00

commission rate: 0.06

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Invoking print function on base-class and derived-class

objects with dynamic binding

Calling virtual function print with base-class pointer

to base-class object invokes base-class print function:

commission employee: Sue Jones

social security number: 222-22-2222

gross sales: 10000.00

commission rate: 0.06

Calling virtual function print with derived-class pointer

to derived-class object invokes derived-class print function:

 (Coninued at the top of next slide …)

Virtual FunctionsVirtual Functions

Systems Programming: PolymorphismSystems Programming: Polymorphism 3737

Virtual FunctionsVirtual Functions

 (…Continued from the bottom of previous slide)
base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling virtual function print with base-class pointer

to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Systems Programming: PolymorphismSystems Programming: Polymorphism 3838

Summarizing Allowed Assignments Between Base-
Class and Derived-Class Objects and Pointers

Summarizing Allowed Assignments Between Base-
Class and Derived-Class Objects and Pointers

Four ways to aim base-class and derived-class pointers at
base-class and derived-class objects
– Aiming a base-class pointer at a base-class object

• Is straightforward.
– Aiming a derived-class pointer at a derived-class object

• Is straightforward.
– Aiming a base-class pointer at a derived-class object

• Is safe, but can be used to invoke only member
functions that base-class declares (unless
downcasting is used).

• Can achieve polymorphism with virtualvirtual functions
– Aiming a derived-class pointer at a base-class object

• Generates a compilation error.

Systems Programming: PolymorphismSystems Programming: Polymorphism 3939

24.4 Type Fields and switch
Statements

24.4 Type Fields and switch
Statements

A switchswitch statement can be used to
determine the type of an object at runtime.
– Include a type field as a data member in
the base class.

– This enables the programmer to invoke
appropriate action for a particular
object.

– Causes problems
• A type test may be forgotten.
• May forget to add new types.

Systems Programming: PolymorphismSystems Programming: Polymorphism 4040

24.5 Abstract Classes and Pure
virtual Functions

24.5 Abstract Classes and Pure
virtual Functions

Abstract classesAbstract classes
– Classes from which the programmer never intends to

instantiate any objects.
• Incomplete—derived classes must define the “missing

pieces”.
• Too generic to define real objects.

– Normally used as base classes and called abstract base abstract base
classes.classes.
• Provides an appropriate base class from which other

classes can inherit.
Classes used to instantiate objects are called concrete concrete
classesclasses..
– Must provide implementation for every member function

they define.

Systems Programming: PolymorphismSystems Programming: Polymorphism 4141

Abstract Classes and
Pure virtual Functions
Abstract Classes and

Pure virtual Functions
Pure virtual function:: A class is made
abstract by declaring one or more of its
virtual functions to be ““purepure”” by by placing
“= 0” in its declaration.

Example
virtual void draw() const = 0;

– “= 0” is known as a pure pure specifierspecifier.
– Do not provide implementations.

Systems Programming: PolymorphismSystems Programming: Polymorphism 4242

Abstract Classes and
Pure virtual Functions
Abstract Classes and

Pure virtual Functions
Every concrete derived classconcrete derived class must override
all base-class pure virtualvirtual functions with
concrete implementations.
If not overridden, the derived-class will
also be abstract.
Used when it does not make sense for
base class to have an implementation of a
function, but the programmer wants all
concrete derived classes to implement the
function.

Systems Programming: PolymorphismSystems Programming: Polymorphism 4343

Software Engineering Observation 24.8Software Engineering Observation 24.8

An abstract classabstract class defines a common
public interface for the various
classes in a class hierarchy.
An abstract classabstract class contains one or
more pure virtualvirtual functions that
concrete derived classesconcrete derived classes must
override.

Systems Programming: PolymorphismSystems Programming: Polymorphism 4444

Abstract Classes and
Pure virtual Functions
Abstract Classes and

Pure virtual Functions
The abstract base classabstract base class can be used to declare
pointers and references that can refer to objects
of any concrete class derived from the abstract
class.
Programs typically use such pointers and references
to manipulate derived-class objects polymorphically.
Polymorphism is particularly effective for
implementing layered software systems.

Examples:
1. Reading or writing data from and to devices.
2. An iterator class that can traverse all the objects
in a container.

	C++Polymorphism
	24.1 Introduction
	Polymorphism Examples
	24.2 Polymorphism Examples
	24.3 Relationships among Objects in an Inheritance Hierarchy
	24.3.2 Aiming Derived-Class Pointers at Base-Class Objects
	24.3.3 Derived-Class Member-Function Calls via Base-Class Pointers
	24.3.4 Virtual Functions
	24.3.4 Virtual Functions
	24.3.4 Virtual Functions
	Summarizing Allowed Assignments Between Base-Class and Derived-Class Objects and Pointers
	24.4 Type Fields and switch Statements
	24.5 Abstract Classes and Pure virtual Functions
	Abstract Classes andPure virtual Functions
	Abstract Classes andPure virtual Functions
	Software Engineering Observation 24.8
	Abstract Classes andPure virtual Functions

