
CS2303 Systems Programming Concepts C14

 1

Program 3 {modified February 9, 2014} 42 Points

Due: February 13, 2014 at 11:59 p.m.

Event-Driven Simulation of a Processor Scheduling Queue in C

This assignment focuses on the use of data structures built in C with structures. One specific goal of this

assignment is to give the students practice with C pointers.

Additionally, completing this assignment will require understanding the basics of event-driven simulation

which is used prominently in the performance analysis of computer systems and computer networks. The

primary objective of this assignment is to use event-driven simulation to compare the performance of a FCFS

(First Come First Served) scheduler against a RR (Round Robin) scheduler. If a student

chooses to implement an additional, optional preemptive RR scheduler they can receive 6

extra credit points! The simulation topology consists of n processes arriving at the CPU scheduler for

service (e.g. see the RR scheduler figure below). Assume queue sizes are unbounded in this program.

 An FCFS scheduler serves customers in the order of their arrival to the scheduler queue. Each process runs

on the CPU within interruption.

Developed for multiprogrammed, time-sharing operating systems, a RR scheduler allocates up to a time slice

(e.g., 100 milliseconds) of CPU service per time slice to the process at the front of the scheduler queue. In

simple RR, arriving customers are enqueued at the back of the scheduler queue. If the process does not finish

within its time slice, as indicated in the figure, the process returns to the back of the scheduler queue to await

its turn for another time slice.

1

2

3

n

expired time slice

SI

XXX

G

D

Round Robin QueueRound Robin Queue

CS2303 Systems Programming Concepts C14

 2

Preemptive RR is a variant of RR designed to give priority to very short jobs. Upon the arrival of a new

process at the scheduler queue, preemptive RR preempts the currently running process in mid time slice. The

newly arriving process then receives one initial time slice before being enqueued at the back of the scheduler

queue. Once the preempting process completes, the preempted process is resumed to receive the remainder of

its preempted time slice of service.

Assignment Inputs

Your program begins by reading in two command line arguments source and time-slice to indicate

respectively, the number of source processes to simulate and the time slice to be used in the RR and

preemptive RR simulations. A time slice of 0 is an indicator that your program should simulate the

FCFS queue for this run of the simulation.

For this simulator all time will be represented in 100 milliseconds units. Thus, a command line time-slice
of 2 indicates a 200 millisecond time slice. Moreover 100 milliseconds is the smallest granularity of the

simulator.

Subsequently, the program reads source lines of input from an ASCII script file where each line of input

contains:

process-id arrival_time cpu_time

where arrival_time and cpu_time are in simulation units (i.e. 100 millisecond units)

For example, the input line:

 2166 30 204

indicates that process 2166 arrives at the scheduler at simulated time 3 seconds needing 20.4 seconds of CPU

service (Note – I have converted milliseconds to seconds here!).

Since the input script will drive the simulation of FCFS, RR and optionally preemptive RR, your program

should first store all the input script in memory such that the input script will be processed the appropriate

number of times (2 or 3) .

Main Assignment

The assignment is to use an event list mechanism to simulate the performance of the customer script for the
FCFS, RR and preemptive RR processor scheduling. Your final output consists of two or three files

annotating the simulation of the queueing mechanisms. Namely, output to a file a time log that shows the

simulated arrival time and completion time of all processes in simulated chronological order. To simplify the

I/O, you can execute your program once per each simulated processor. The end of each output file should

also record the mean and variance of customer response time for that queueing mechanism.

CS2303 Systems Programming Concepts C14

 3

The Event List

Event-driven simulation is controlled by a linked list known as the event list. Future events are inserted into

the event list in chronological order with the next event in simulated time at the front of the list. In this

assignment, the event list will hold two event types, process arrivals and the completion time of the process

currently running on the CPU. The simulation runs in a continuous loop processing the next event at the front

of the event list until the event list becomes empty. Processing an arrival event involves taking the entry off

the event list and sending the process to the scheduler queue. Processing a CPU completion event involves

first determining whether the process still requires more CPU time. If the process has completed, process

statistics are calculated and recorded before the process is terminated. If the process still needs more CPU

time, the process is enqueued at the back of the scheduler queue. In either case, taking the completion event

off the event list triggers a call to the processor scheduler. If there is a process at the front of the scheduler, it

is taken off the front of the scheduler queue and a new event with the appropriate completion time is inserted

into the event list.

The FCFS Scheduler

The FCFS scheduler is implemented as a queue data structure with arriving processes enqueued at the back of

the queue.

The RR Scheduler

The RR scheduler is also implemented as a queue with arriving processes enqueued at the back of the queue.

For both the FCFS and the simple RR scheduler, when a process arrives at the scheduler, the scheduler needs

to check if another process is currently running. If the CPU is idle, the arriving process is sent to the event

list with the appropriate completion time. Note, it is the difference in completion time in the event list which

is different for the FCFS and the RR scheduler.

The Preemptive RR Scheduler {Extra credit ONLY - 6 points}

The preemptive RR scheduler is also implemented as a queue. When a new process is sent to the RR queue,

a check needs to be made to determine if another process is running. An indication of a currently running

process implies taking its completion event off the event list and putting the interrupted process somewhere

until the preemption is over. In either case, a new completion event is added to the event list for the newly

arriving process with the appropriate completion time.

What to turn in for Program 3

An official test file will be made available a few days before the due date. Turn in your assignment using

the turnin program on the CCC machines. You should turn in a tarred file that includes your source code,

your two output log files (one for FCFS and one for RR), a make file and a README file. The

README file should provide any information to help the TA or SA test your program for grading

purpose (e.g., you need to indicate how you entered ties in arrival time into your event list).

