Point-to-Point Network Switching

Point-to-Point Switching

- Circuit Switching
- Store-and -Forward Networks
 - Message Switching
 - Packet Switching
 - connection-oriented vs connectionless
 - virtual circuit vs datagram
 - Cell Switching

Circuit Switching

- [historic definition] seeking out and establishing a physical copper path end-to-end.
- implies the need to first *set up* a <u>dedicated</u>, end-to-end path for the connection *before* the information transfer takes place.
- once the connection is made the only delay is propagation time.

Store-and-Forward Networks

- Intermediate processors (IMPS, nodes, routers, gateways, switches)
- along the path store the incoming block of data.
- Each block is received in its entirety, inspected for errors, and retransmitted along the path to the destination. This implies one transmission time per hop.

Message Switching

- Store-and-forward network where the block of transfer is a complete *message*.
- Messages can be quite large
 - buffering problems
 - results in high mean delay

Packet Switching

• Store-and-forward network where the block of transfer is a complete *packet*. A packet is a variable length block of data with a tight upper bound.

⇒ Using packets improves mean message delay.

Cell Switching

53 bytes

- Network where units of transfer is a small, fixed size == one cell.
- This is used in ATM networks.

Packet Switched Networks

- connection-oriented
 - A setup stage is used to determine the end-toend path and
 - a connection is established. Data flow streams are identified by some type of connection indicator (e.g. X.25, SNA).

Packet Switched Networks

- connectionless
 - No set up is needed.
 - Each packet contains information which allows the packet to be individually routed hop-byhop.

Networks: Switching

Datagram vs Virtual Circuit

- datagram
 - Each datagram packet may be individually routed.
- virtual circuit
 - Virtual circuit set up is required. All packets in a virtual circuit follow the same path.

Event Timing

DCC 6th Ed., W. Stallings, Figure 10.3

External
Virtual Circuit
And Datagram
Operation

DCC 6th Ed., W. Stallings, Figure 10.4

Internal
Virtual Circuit
And Datagram
Operation

DCC 6th Ed., W. Stallings, Figure 10.5

