
CS4514 Computer Networks Program 3 C02

 1

Programming Assignment 3 (60 points)
Due: 9 a.m., Monday February 25, 2002

Concurrent Server Using Go Back N

This assignment builds on the experiences of Program 2 that implemented a simple client-server
protocol on top of an emulated physical layer. This program is to be completed in two person teams or
by individuals. At this stage of the course, the only single person projects that are encouraged are
situations where your partner has dropped out of the course.

The assignment is to build a concurrent server that handles requests from two or more clients. [Unix
socket calls are used with TCP as the physical layer for transmitting between clients and a concurrent
server]. Both the clients and the server will have a small application layer protocol that defines the
interaction between client and server. Furthermore, the architecture includes a small network layer to
deal with the conversion from messages-to-packets-to-frames. Note: Some of the data link layer issues
from Program 2 can be simplified in Program 3.

The command line for the client program is: client scriptnum

where

scriptnum is an input parameter that indicates (indirectly) which client this is.

Hence the command client script1 starts up client 1 and client script2 starts up client2.

Application Layer

The client application process read its "scripted actions" from the file scripti.txt. That is, client1 reads
from script1.txt and client2 read from script2.txt

Each client application process sends requests (one at a time) to the server application process of the
form:
 command number message

where command can be one of the following:

 r indicates read a message from the server
q indicates quit the conversation and close the client connection

 w indicates write a message to the server

{r, w and q are ASCII characters}

number is an integer between 1 and 14 indicating the location of the message in the server

database

message is a text message. The maximum size of a message is 360 bytes.

CS4514 Computer Networks Program 3 C02

 2

The server application process begins by reading into memory the original database of 14 messages
from the input file serverbase.txt. The server application process handles client application requests to
read or write a message from/to the database.

When a new client connects to the concurrent server, the server will fork a child process to handle all
interactions with that client. The server child process begins with a fresh copy of the original database.
The server child process responds to the client’s requests using the child’s copy of the database.

When the client application issues a read request, the server child process sends a copy of the requested
message back to the client.

Read Example

client sends message: r 6
server child extracts message 6 from its copy of the database and sends it back to the client.

When the client application issues a write request, the server child process overwrites the received
message in the correct place in the child’s copy of the database. The server must send back a response
message to the client to indicate that the write request has been completed.

Write Example

client sends the message: w 4 Duke Blue Devils – will they repeat as National Champs?
server child overwrites message 4 in the child’s database with the text:

Duke Blue Devils – will they repeat as National Champs?

Thus, each server child process maintains a separate copy of the database for the client it is serving.

Quit Example

When the server receives a quit message from the client, the server child process prints out the database
to the appropriate serveri.log file (where i is the number of the client). See the physical layer below for
how the server knows which file to write out. The server child then sends a response to the client before
terminating the child process. Note: You need a “clean” way to terminate the server.

The client application process sends a new command to the server application process after it receives a
message back from the server or after it receives a response message from a write command.

Network Layer

The network layer receives the messages from the application layer and converts the message into
packets. The maximum size of a packet for this assignment is 50 bytes. Packets are sent to the data link

CS4514 Computer Networks Program 3 C02

 3

layer to be converted to frames for transmission. Note – the network layer continues to send packets
until blocked by the data link layer.

The network layer also receives packets from the data link layer. It reassembles the packets into a
message to send to the application layer. Note: the network layer will need to have a mechanism to
determine the last packet in a message.

Data Link Layer

The data link layer receives packets from the network layer, creates frames, and sends frames to the
physical layer for transmission. The data link layer also receives transmitted frames from the physical
layer, extracts the payload, reassembles packets, and forwards packets to the network layer. The
maximum size for the frame payload is 35 bytes. You must design the “overhead” bytes of the frame to
implement a Go Back N sliding window protocol. If it simplifies your task, framing bytes and byte
stuffing are not necessary for assignment 3. However, if it easier to keep these functions in this
assignment that is fine. As in program 2, your design needs to include an error-detection byte. Your
design will need to include sequence numbers in the frames and a mechanism for handling ACKs. The
minimum frame size is your choice, and it is your design decision whether to piggyback ACKs or send
separate ACK frames. Due to the request/response nature of the application layer, ACK timers are not
necessary for this assignment.

The goal of this assignment is to implement a Go Back N sliding window scheme at the data link layer.
For full credit you must implement a sending window size of four frames or higher. The data link layer
continues to receive packets from the network layer until its sliding window is full of unACKed frames.
This requires multiple timers on both the client and server side. If you are short on time or run into
problems, you should fall back to implementing a one-bit sliding window with a single timer on both
sides of the connection.

Client Process Flow

Each client will call the physical layer to establish a connection to the concurrent server. The data link
layer then gets packets from the network layer, puts together a frame and gives it to the physical layer to
send. The data link layer flow will then depend on events coming from the network layer, the current
availability within the sliding window, and events coming from the physical layer. The client process
will terminate when the response message to the quit message is received at the client application layer.

Flow of Server Child Process

Each data link layer server child process waits for frames from the physical layer and passes packets up
to the network layer. Similar to the client side, the flow of the server data link layer depends on whether
there is traffic from the server to be sent back to the client (either frames with packets or ACK frames).

Each data link client records significant events in a log file clienti.log. Each data link layer server child
records significant events in a log file serveri.log. Significant events include: packet sent, frame sent,
frame resent, ACK sent, ACK resent, frame received successfully, frame received in error, ACK

CS4514 Computer Networks Program 3 C02

 4

received successfully, ACK received in error, duplicate frame, and timer expires. For logging purposes
identify the packet and the sequence number of each frame for each event. Begin counting packets and
frames at 1.

Physical Layer

The physical layer uses Unix sockets to send the constructed frames as actual TCP messages between the
clients and the concurrent server. When the client physical layer first establishes a connection to the
concurrent server, it must send one TCP message to the server child process to identify itself (i.e., the
client with input parameter script1 sends a message containing client1 to the server child process). This
tells the server child where to print out the final database.

Simulating Errors

Force every 7th frame sent by each client to be in error by flipping any single bit in the error-detection
byte prior to transmission. Force every 9th frame sent by each server child to be in error using the same
flipping mechanism. (i.e., frames 7, 14, 21, … sent by each client will have a transmission error and
frames 9, 18, 27, … sent by each server child will be in error.) Each frame with a forced error should be
resent correctly on the second try.

Hints

• [Design] Plan your design in a modular fashion such that if everything is not totally working, you

can turn in an output that shows exactly what is working. Relaxing the sliding window scheme is
one option.

• [Documentation] Your commented program must have a special section to explain the details of

your specific design decisions. Remember: This a team project and all routines must include
specify the author as part of the documentation!! Team members may not receive the same
grade on an assignment due to uneven workload.

• [DEBUG] Include print statements in the various layers while debugging. You should consider

some type of verbose debugging flag that can be turned on and off.

• [Performance Timing] You must measure the total execution time of the complete emulated

transfer per client and print this out in file clienti.log.

• port numbers - Your clients should have unique port numbers and the clients should treat the

server port number like a “well-known” port number. {Conceivably, you could register your
database server with the oracle from program 1 and the client processes could get IP address and
port number from the oracle.}

CS4514 Computer Networks Program 3 C02

 5

What to turn in for Assignment 3

The three official tests file (script1.txt, script2.txt, serverbase.txt) will be made available a few days
before the due date. Use turnin to turn in the two source programs client.c and server.c, and the client
and server output files corresponding to running the programs using the TA's test files. The README
file must indicate to the TA the working and the non-working parts to receive partial-credit for
program 3.

