
Networks : TCP Congestion Control 1

TCP
Congestion Control

Networks : TCP Congestion Control 2

TCP Congestion Control
• Essential strategy :: The TCP host sends

packets into the network without a reservation
and then the host reacts to observable events.

• Originally TCP assumed FIFO queuing.
• Basic idea :: each source determines how

much capacity is available to a given flow in the
network.

• ACKs are used to ‘pace’ the transmission of
packets such that TCP is “self-clocking”.

Networks : TCP Congestion Control 3

AIMD
(Additive Increase / Multiplicative Decrease)

• CongestionWindow (cwnd) is a variable held by
the TCP source for each connection.

• cwnd is set based on the perceived level of
congestion. The Host receives implicit (packet
drop) or explicit (packet mark) indications of
internal congestion.

MaxWindow :: min (CongestionWindow , AdvertisedWindow)

EffectiveWindow = MaxWindow – (LastByteSent -LastByteAcked)

Networks : TCP Congestion Control 4

Additive Increase
• Additive Increase is a reaction to perceived

available capacity.
• Linear Increase basic idea:: For each “cwnd’s

worth” of packets sent, increase cwnd by 1
packet.

• In practice, cwnd is incremented fractionally for
each arriving ACK.

increment = MSS x (MSS /cwnd)
cwnd = cwnd + increment

Networks : TCP Congestion Control 5

Multiplicative Decrease

* The key assumption is that a dropped packet and the
resultant timeout are due to congestion at a router or
a switch.
Multiplicate Decrease:: TCP reacts to a timeout by
halving cwnd.

• Although cwnd is defined in bytes, the literature often
discusses congestion control in terms of packets (or
more formally in MSS == Maximum Segment Size).

• cwnd is not allowed below the size of a single packet.

Networks : TCP Congestion Control 6

Additive
Increase

Networks : TCP Congestion Control 7

AIMD
(Additive Increase / Multiplicative Decrease)

• It has been shown that AIMD is a necessary
congestion for TCP congestion control to be
stable.

• Because the simple CC mechanism involves
timeouts that cause retransmissions, it is important
that hosts have an accurate timeout mechanism.

• Timeouts set as a function of average RTT and
standard deviation of RTT.

• However, TCP hosts only sample round-trip time
once per RTT using coarse-grained clock.

Networks : TCP Congestion Control 8

Networks : TCP Congestion Control 9

Slow Start
• Linear additive increase takes too long to

ramp up a new TCP connection from cold
start.

• Beginning with TCP Tahoe, the slow start
mechanism was added to provide an initial
exponential increase in the size of cwnd.

Remember mechanism by: slow start
prevents a slow start. Moreover, slow start
is slower than sending a full advertised
window’s worth of packets all at once.

Networks : TCP Congestion Control 10

Slow Start
• The source starts with cwnd = 1.
• Every time an ACK arrives, cwnd is

incremented.
!cwnd is effectively doubled per RTT “epoch”.
• Two slow start situations:

" At the very beginning of a connection {cold start}.
" When the connection goes dead waiting for a

timeout to occur (i.e, the advertized window goes
to zero!)

Networks : TCP Congestion Control 11

Slow Start

Networks : TCP Congestion Control 12

Slow Start

• However, in the second case the source
has more information. The current value
of cwnd can be saved as a congestion
threshold.

• This is also known as the “slow start
threshold” ssthresh.

Networks : TCP Congestion Control 13

Networks : TCP Congestion Control 14

Fast Retransmit
• Coarse timeouts remained a problem, and Fast

retransmit was added with TCP Tahoe.
• Since the receiver responds every time a packet

arrives, this implies the sender will see duplicate
ACKs.

Basic Idea:: use duplicate ACKs to signal lost packet.

Fast Retransmit
Upon receipt of three duplicate ACKs, the TCP Sender

retransmits the lost packet.

Networks : TCP Congestion Control 15

Fast Retransmit
• Generally, fast retransmit eliminates about half

the coarse-grain timeouts.
• This yields roughly a 20% improvement in

throughput.
• Note – fast retransmit does not eliminate all

the timeouts due to small window sizes at the
source.

Networks : TCP Congestion Control 16

Fast
Retransmit

Networks : TCP Congestion Control 17

Networks : TCP Congestion Control 18

Fast Recovery
• Fast recovery was added with TCP Reno.
• Basic idea:: When fast retransmit detects

three duplicate ACKs, start the recovery
process from congestion avoidance region
and use ACKs in the pipe to pace the
sending of packets.

Fast Recovery
After Fast Retransmit, half cwnd and commence

recovery from this point using linear additive increase
‘primed’ by left over ACKs in pipe.

Networks : TCP Congestion Control 19

Congestion
window

10

5

15

20

0

Round-trip times

Slow
start

Congestion
avoidance

Congestion occurs

Threshold

Figure 7.63

TCP Congestion Control

Leon-Garcia & Widjaja: Communication Networks

Copyright ©2000 The McGraw Hill Companies

Networks : TCP Congestion Control 20

Modified Slow Start

• With fast recovery, slow start only
occurs:
–At cold start
–After a coarse-grain timeout

• This is the difference between
TCP Tahoe and TCP Reno!!

